ترغب بنشر مسار تعليمي؟ اضغط هنا

Performances tests on the SPHERE-IFS

156   0   0.0 ( 0 )
 نشر من قبل Dino Mesa
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Until now, just a few extrasolar planets (~30 out of 860) have been found through the direct imaging method. This number should greatly improve when the next generation of High Contrast Instruments like Gemini Planet Imager (GPI) at Gemini South Telescope or SPHERE at VLT will became operative at the end of this year. In particular, the Integral Field Spectrograph (IFS), one of the SPHERE subsystems, should allow a first characterization of the spectral type of the found extrasolar planets. Here we present the results of the last performance tests that we have done on the IFS instrument at the Institut de Planetologie et dAstrophysique de Grenoble (IPAG) in condition as similar as possible to the ones that we will find at the telescope. We have found that we should be able to reach contrast down to 5x10$^{-7}$ and make astrometry at sub-mas level with the instrument in the actual conditions. A number of critical issues have been identified. The resolution of these problems could allow to further improve the performance of the instrument.



قيم البحث

اقرأ أيضاً

124 - D. Mesa , R. Gratton , A.Berton 2011
Aims. We present simulations of the perfomances of the future SPHERE IFS instrument designed for imaging extrasolar planets in the near infrared (Y, J, and H bands). Methods. We used the IDL package code for adaptive optics simulation (CAOS) to prepa re a series of input point spread functions (PSF). These feed an IDL tool (CSP) that we designed to simulate the datacube resulting from the SPHERE IFS. We performed simulations under different conditions to evaluate the contrast that IFS will be able to reach and to verify the impact of physical propagation within the limits of the near field of the aperture approximation (i.e. Fresnel propagation). We then performed a series of simulations containing planet images to test the capability of our instrument to correctly classify the found objects. To this purpose we developed a separated IDL tool. Results. We found that using the SPHERE IFS instrument and appropriate analysis techniques, such as multiple spectral differential imaging (MDI), spectral deconvolution (SD), and angular differential imaging (ADI), we should be able to image companion objects down to a luminosity contrast of ? 10-7 with respect to the central star in favorable cases. Spectral deconvolution resulted in the most effective method for reducing the speckle noise. We were then able to find most of the simulated planets (more than 90% with the Y-J-mode and more than the 95% with the Y-H-mode) for contrasts down to 3 times 10-7 and separations between 0.3 and 1.0 arcsec. The spectral classification is accurate but seems to be more precise for late T-type spectra than for earlier spectral types. A possible degeneracy between early L-type companion objects and field objects (flat spectra) is highlighted. The spectral classification seems to work better using the Y-H-mode than with the Y-J-mode.
Angular differential imaging (ADI) and spectral differential imaging (SDI) are commonly used for direct detection and characterisation of young, Jovian exoplanets in datasets obtained with the SPHERE/IFS instrument. We compare the performance of ADI, SDI, and three combinations of ADI and SDI to find which technique achieves the highest signal-to-noise ratio (S/N), and we analyse their performance as functions of integration time, field rotation, and wavelength range. We analyse SPHERE/IFS observations of three known exoplanets, namely Beta Pictoris b, 51 Eridani b, and HR 8799 e, with five differential imaging techniques. We split the datasets into subsets to vary each parameter before the data are processed with each technique. The differential imaging techniques are applied using principal component analysis (PCA). The tests show that a combination of SDI and ADI consistently achieves better results than ADI alone, and using SDI and ADI simultaneously (combined differential imaging; CODI) achieved the best results. The integration time test shows that targets with a separation larger than 0.24 arcsec observed with an integration time of more than 10$^3$s were photon-noise limited. Field rotation shows a strong correlation with S/N for field rotations up to 1 full width at half maximum (FWHM), after which no significant increase in S/N with field rotation is observed. Wavelength range variation shows a general increase in S/N for broader wavelength ranges, but no clear correlation is seen. Spectral information is essential to boost S/N compared to regular ADI. Our results suggest that CODI should be the preferred processing technique to search for new exoplanets with SPHERE/IFS. To optimise direct-imaging observations, the field rotation should exceed 1 FWHM to detect exoplanets at small separations.
392 - Adrien Deline 2019
The Characterising Exoplanet Satellite (CHEOPS) is a space mission designed to perform photometric observations of bright stars to obtain precise radii measurements of transiting planets. The high-precision photometry of CHEOPS relies on careful on-g round calibration of its payload. For that purpose, intensive pre-launch campaigns of measurements were carried out to calibrate the instrument and characterise its photometric performances. We report on main results of these campaigns, provide a complete analysis of data sets and estimate in-flight photometric performance by mean of end-to-end simulation. The on-ground photometric stability of the instrument is found to be of the order of 15 parts per million over 5 hours. Our end-to-end simulation shows that measurements of planet-to-star radii ratio with CHEOPS can be determined with a precision of 2% for a Neptune-size planet transiting a K-dwarf star and 5% for an Earth-size planet orbiting a Sun-like star. It corresponds to signal-to-noise ratios on the transit depths of 25 and 10 respectively, allowing the characterisation and detection of these planets. The pre-launch CHEOPS performances are shown to be compliant with the mission requirements.
153 - S. Hoyer 2019
The CHaracterizing ExOPlanet Satellite (CHEOPS), to be launched in December 2019, will detect and characterize small size exoplanets via ultra high precision photometry during transits. CHEOPS is designed as a follow-up telescope and therefore it wil l monitor a single target at a time. The scientific users will retrieve science-ready light curves of the target, automatically generated by the CHEOPS data reduction pipeline of the Science Operations Centre. This paper describes how the pipeline processes the series of raw images and, in particular, how it handles the specificities of CHEOPS data, such as the rotating field of view, the extended irregular Point Spread Function, and the data temporal gaps in the context of the strict photometric requirements of the mission. The current status and performance of the main processing stages of the pipeline, that is the calibration, correction and photometry, are presented to allow the users to understand how the science-ready data have been derived. Finally, the general performance of the pipeline is illustrated via the processing of representative scientific cases generated by the mission simulator.
The Gemini Planet Imager (GPI) is a high-contrast imaging instrument designed to directly image and characterize exoplanets. GPI is currently undergoing several upgrades to improve performance. In this paper, we discuss the upgrades to the GPI IFS. T his primarily focuses on the design and performance improvements of new prisms and filters. This includes an improved high-resolution prism which will provide more evenly dispersed spectra across y, J, H and K-bands. Additionally, we discuss the design and implementation of a new low-resolution mode and prism which allow for imaging of all four bands (y, J, H and K-bands) simultaneously at R=10. We explore the possibility of using a multiband filter which would block the light between the four spectral bands. We discuss possible performance improvements from the multiband filter, if implemented. Finally we explore the possibility of making small changes to the optical design to improve the IFSs performance near the edge of the field of view.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا