ﻻ يوجد ملخص باللغة العربية
The success of Neural Machine Translation (NMT) largely depends on the availability of large bitext training corpora. Due to the lack of such large corpora in low-resource language pairs, NMT systems often exhibit poor performance. Extra relevant monolingual data often helps, but acquiring it could be quite expensive, especially for low-resource languages. Moreover, domain mismatch between bitext (train/test) and monolingual data might degrade the performance. To alleviate such issues, we propose AUGVIC, a novel data augmentation framework for low-resource NMT which exploits the vicinal samples of the given bitext without using any extra monolingual data explicitly. It can diversify the in-domain bitext data with finer level control. Through extensive experiments on four low-resource language pairs comprising data from different domains, we have shown that our method is comparable to the traditional back-translation that uses extra in-domain monolingual data. When we combine the synthetic parallel data generated from AUGVIC with the ones from the extra monolingual data, we achieve further improvements. We show that AUGVIC helps to attenuate the discrepancies between relevant and distant-domain monolingual data in traditional back-translation. To understand the contributions of different components of AUGVIC, we perform an in-depth framework analysis.
The scarcity of parallel data is a major obstacle for training high-quality machine translation systems for low-resource languages. Fortunately, some low-resource languages are linguistically related or similar to high-resource languages; these relat
Cross-lingual speech adaptation aims to solve the problem of leveraging multiple rich-resource languages to build models for a low-resource target language. Since the low-resource language has limited training data, speech recognition models can easi
Recent research in multilingual language models (LM) has demonstrated their ability to effectively handle multiple languages in a single model. This holds promise for low web-resource languages (LRL) as multilingual models can enable transfer of supe
This paper explores the possibility of improving the performance of specialized parsers for pre-modern Slavic by training them on data from different related varieties. Because of their linguistic heterogeneity, pre-modern Slavic varieties are treate
The explosion of user-generated content (UGC)--e.g. social media posts, comments, and reviews--has motivated the development of NLP applications tailored to these types of informal texts. Prevalent among these applications have been sentiment analysi