ترغب بنشر مسار تعليمي؟ اضغط هنا

Reynolds stress scaling in the near-wall region of wall-bounded flows

124   0   0.0 ( 0 )
 نشر من قبل Alexander Smits
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new scaling is derived that yields a Reynolds number independent profile for all components of the Reynolds stress in the near-wall region of wall bounded flows, including channel, pipe and boundary layer flows. The scaling demonstrates the important role played by the wall shear stress fluctuations and how the large eddies determine the Reynolds number dependence of the near-wall turbulence behavior.



قيم البحث

اقرأ أيضاً

A new scaling is derived that yields a Reynolds number independent profile for all components of the Reynolds stress in the near-wall region of wall bounded flows. The scaling demonstrates the important role played by the wall shear stress fluctuatio ns and how the large eddies determine the Reynolds number dependence of the near-wall turbulence behavior.
A new velocity scale is derived that yields a Reynolds number independent profile for the streamwise turbulent fluctuations in the near-wall region of wall bounded flows for $y^+<25$. The scaling demonstrates the important role played by the wall she ar stress fluctuations and how the large eddies determine the Reynolds number dependence of the near-wall turbulence distribution.
The ability of linear stochastic response analysis to estimate coherent motions is investigated in turbulent channel flow at friction Reynolds number Re$_tau$ = 1007. The analysis is performed for spatial scales characteristic of buffer-layer and lar ge-scale motions by separating the contributions of different temporal frequencies. Good agreement between the measured spatio-temporal power spectral densities and those estimated by means of the resolvent is found when the effect of turbulent Reynolds stresses, modelled with an eddy-viscosity associated to the turbulent mean flow, is included in the resolvent operator. The agreement is further improved when the flat forcing power spectrum (white noise) is replaced with a power spectrum matching the measures. Such a good agreement is not observed when the eddy-viscosity terms are not included in the resolvent operator. In this case, the estimation based on the resolvent is unable to select the right peak frequency and wall-normal location of buffer-layer motions. Similar results are found when comparing truncated expansions of measured streamwise velocity power spectral densities based on a spectral proper orthogonal decomposition to those obtained with optimal resolvent modes.
178 - Paul Manneville 2017
Despite recent progress, laminar-turbulent coexistence in transitional planar wall-bounded shear flows is still not well understood. Contrasting with the processes by which chaotic flow inside turbulent patches is sustained at the local (minimal flow unit) scale, the mechanisms controlling the obliqueness of laminar-turbulent interfaces typically observed all along the coexistence range are still mysterious. An extension of Waleffes approach [Phys. Fluids 9 (1997) 883--900] is used to show that, already at the local scale, drift flows breaking the problems spanwise symmetry are generated just by slightly detuning the modes involved in the self-sustainment process. This opens perspectives for theorizing the formation of laminar-turbulent patterns.
Input-output analysis of transitional channel flows has proven to be a valuable analytical tool for identifying important flow structures and energetic motions. The traditional approach abstracts the nonlinear terms as forcing that is unstructured, i n the sense that this forcing is not directly tied to the underlying nonlinearity in the dynamics. This paper instead employs a structured singular value-based approach that preserves certain input-output properties of the nonlinear forcing function in an effort to recover the larger range of key flow features identified through nonlinear analysis, experiments, and direct numerical simulation (DNS) of transitional channel flows. Application of this method to transitional plane Couette and plane Poiseuille flows leads to not only the identification of the streamwise coherent structures predicted through traditional input-output approaches, but also the characterization of the oblique flow structures as those requiring the least energy to induce transition in agreement with DNS studies, and nonlinear optimal perturbation analysis. The proposed approach also captures the recently observed oblique turbulent bands that have been linked to transition in experiments and DNS with very large channel size. The ability to identify the larger amplification of the streamwise varying structures predicted from DNS and nonlinear analysis in both flow regimes suggests that the structured approach allows one to maintain the nonlinear effects associated with weakening of the lift-up mechanism, which is known to dominate the linear operator. Capturing this key nonlinear effect enables the prediction of the wider range of known transitional flow structures within the analytical input-output modeling paradigm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا