ترغب بنشر مسار تعليمي؟ اضغط هنا

The dilemma of quantum neural networks

128   0   0.0 ( 0 )
 نشر من قبل Yuxuan Du
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The core of quantum machine learning is to devise quantum models with good trainability and low generalization error bound than their classical counterparts to ensure better reliability and interpretability. Recent studies confirmed that quantum neural networks (QNNs) have the ability to achieve this goal on specific datasets. With this regard, it is of great importance to understand whether these advantages are still preserved on real-world tasks. Through systematic numerical experiments, we empirically observe that current QNNs fail to provide any benefit over classical learning models. Concretely, our results deliver two key messages. First, QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets. Second, the trainability of QNNs is insensitive to regularization techniques, which sharply contrasts with the classical scenario. These empirical results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.

قيم البحث

اقرأ أيضاً

We introduce Quantum Graph Neural Networks (QGNN), a new class of quantum neural network ansatze which are tailored to represent quantum processes which have a graph structure, and are particularly suitable to be executed on distributed quantum syste ms over a quantum network. Along with this general class of ansatze, we introduce further specialized architectures, namely, Quantum Graph Recurrent Neural Networks (QGRNN) and Quantum Graph Convolutional Neural Networks (QGCNN). We provide four example applications of QGNNs: learning Hamiltonian dynamics of quantum systems, learning how to create multipartite entanglement in a quantum network, unsupervised learning for spectral clustering, and supervised learning for graph isomorphism classification.
79 - Renxin Zhao , Shi Wang 2021
The rapid development of quantum computer hardware has laid the hardware foundation for the realization of QNN. Due to quantum properties, QNN shows higher storage capacity and computational efficiency compared to its classical counterparts. This art icle will review the development of QNN in the past six years from three parts: implementation methods, quantum circuit models, and difficulties faced. Among them, the first part, the implementation method, mainly refers to some underlying algorithms and theoretical frameworks for constructing QNN models, such as VQA. The second part introduces several quantum circuit models of QNN, including QBM, QCVNN and so on. The third part describes some of the main difficult problems currently encountered. In short, this field is still in the exploratory stage, full of magic and practical significance.
Quantum State Tomography is the task of determining an unknown quantum state by making measurements on identical copies of the state. Current algorithms are costly both on the experimental front -- requiring vast numbers of measurements -- as well as in terms of the computational time to analyze those measurements. In this paper, we address the problem of analysis speed and flexibility, introducing textit{Neural Adaptive Quantum State Tomography} (NA-QST), a machine learning based algorithm for quantum state tomography that adapts measurements and provides orders of magnitude faster processing while retaining state-of-the-art reconstruction accuracy. Our algorithm is inspired by particle swarm optimization and Bayesian particle-filter based adaptive methods, which we extend and enhance using neural networks. The resampling step, in which a bank of candidate solutions -- particles -- is refined, is in our case learned directly from data, removing the computational bottleneck of standard methods. We successfully replace the Bayesian calculation that requires computational time of $O(mathrm{poly}(n))$ with a learned heuristic whose time complexity empirically scales as $O(log(n))$ with the number of copies measured $n$, while retaining the same reconstruction accuracy. This corresponds to a factor of a million speedup for $10^7$ copies measured. We demonstrate that our algorithm learns to work with basis, symmetric informationally complete (SIC), as well as other types of POVMs. We discuss the value of measurement adaptivity for each POVM type, demonstrating that its effect is significant only for basis POVMs. Our algorithm can be retrained within hours on a single laptop for a two-qubit situation, which suggests a feasible time-cost when extended to larger systems. It can also adapt to a subset of possible states, a choice of the type of measurement, and other experimental details.
Quantum neural networks (QNNs) have generated excitement around the possibility of efficiently analyzing quantum data. But this excitement has been tempered by the existence of exponentially vanishing gradients, known as barren plateau landscapes, fo r many QNN architectures. Recently, Quantum Convolutional Neural Networks (QCNNs) have been proposed, involving a sequence of convolutional and pooling layers that reduce the number of qubits while preserving information about relevant data features. In this work we rigorously analyze the gradient scaling for the parameters in the QCNN architecture. We find that the variance of the gradient vanishes no faster than polynomially, implying that QCNNs do not exhibit barren plateaus. This provides an analytical guarantee for the trainability of randomly initialized QCNNs, which singles out QCNNs as being trainable unlike many other QNN architectures. To derive our results we introduce a novel graph-based method to analyze expectation values over Haar-distributed unitaries, which will likely be useful in other contexts. Finally, we perform numerical simulations to verify our analytical results.
Despite the pursuit of quantum advantages in various applications, the power of quantum computers in neural network computations has mostly remained unknown, primarily due to a missing link that effectively designs a neural network model suitable for quantum circuit implementation. In this article, we present the co-design framework, namely QuantumFlow, to provide such a missing link. QuantumFlow consists of novel quantum-friendly neural networks (QF-Nets), a mapping tool (QF-Map) to generate the quantum circuit (QF-Circ) for QF-Nets, and an execution engine (QF-FB). We discover that, in order to make full use of the strength of quantum representation, it is best to represent data in a neural network as either random variables or numbers in unitary matrices, such that they can be directly operated by the basic quantum logical gates. Based on these data representations, we propose two quantum friendly neural networks, QF-pNet and QF-hNet in QuantumFlow. QF-pNet using random variables has better flexibility, and can seamlessly connect two layers without measurement with more qbits and logical gates than QF-hNet. On the other hand, QF-hNet with unitary matrices can encode 2^k data into k qbits, and a novel algorithm can guarantee the cost complexity to be O(k^2). Compared to the cost of O(2^k)in classical computing, QF-hNet demonstrates the quantum advantages. Evaluation results show that QF-pNet and QF-hNet can achieve 97.10% and 98.27% accuracy, respectively. Results further show that for input sizes of neural computation grow from 16 to 2,048, the cost reduction of QuantumFlow increased from 2.4x to 64x. Furthermore, on MNIST dataset, QF-hNet can achieve accuracy of 94.09%, while the cost reduction against the classical computer reaches 10.85x. To the best of our knowledge, QuantumFlow is the first work to demonstrate the potential quantum advantage on neural network computation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا