ترغب بنشر مسار تعليمي؟ اضغط هنا

Expectation Programming

108   0   0.0 ( 0 )
 نشر من قبل Tim Reichelt
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Building on ideas from probabilistic programming, we introduce the concept of an expectation programming framework (EPF) that automates the calculation of expectations. Analogous to a probabilistic program, an expectation program is comprised of a mix of probabilistic constructs and deterministic calculations that define a conditional distribution over its variables. However, the focus of the inference engine in an EPF is to directly estimate the resulting expectation of the program return values, rather than approximate the conditional distribution itself. This distinction allows us to achieve substantial performance improvements over the standard probabilistic programming pipeline by tailoring the inference to the precise expectation we care about. We realize a particular instantiation of our EPF concept by extending the probabilistic programming language Turing to allow so-called target-aware inference to be run automatically, and show that this leads to significant empirical gains compared to conventional posterior-based inference.

قيم البحث

اقرأ أيضاً

Pyro is a probabilistic programming language built on Python as a platform for developing advanced probabilistic models in AI research. To scale to large datasets and high-dimensional models, Pyro uses stochastic variational inference algorithms and probability distributions built on top of PyTorch, a modern GPU-accelerated deep learning framework. To accommodate complex or model-specific algorithmic behavior, Pyro leverages Poutine, a library of composable building blocks for modifying the behavior of probabilistic programs.
We present SmartChoices, an approach to making machine learning (ML) a first class citizen in programming languages which we see as one way to lower the entrance cost to applying ML to problems in new domains. There is a growing divide in approaches to building systems: on the one hand, programming leverages human experts to define a system while on the other hand behavior is learned from data in machine learning. We propose to hybridize these two by providing a 3-call API which we expose through an object called SmartChoice. We describe the SmartChoices-interface, how it can be used in programming with minimal code changes, and demonstrate that it is an easy to use but still powerful tool by demonstrating improvements over not using ML at all on three algorithmic problems: binary search, QuickSort, and caches. In these three examples, we replace the commonly used heuristics with an ML model entirely encapsulated within a SmartChoice and thus requiring minimal code changes. As opposed to previous work applying ML to algorithmic problems, our proposed approach does not require to drop existing implementations but seamlessly integrates into the standard software development workflow and gives full control to the software developer over how ML methods are applied. Our implementation relies on standard Reinforcement Learning (RL) methods. To learn faster, we use the heuristic function, which they are replacing, as an initial function. We show how this initial function can be used to speed up and stabilize learning while providing a safety net that prevents performance to become substantially worse -- allowing for a safe deployment in critical applications in real life.
Neural networks are sensitive to hyper-parameter and architecture choices. Automated Machine Learning (AutoML) is a promising paradigm for automating these choices. Current ML software libraries, however, are quite limited in handling the dynamic int eractions among the components of AutoML. For example, efficientNAS algorithms, such as ENAS and DARTS, typically require an implementation coupling between the search space and search algorithm, the two key components in AutoML. Furthermore, implementing a complex search flow, such as searching architectures within a loop of searching hardware configurations, is difficult. To summarize, changing the search space, search algorithm, or search flow in current ML libraries usually requires a significant change in the program logic. In this paper, we introduce a new way of programming AutoML based on symbolic programming. Under this paradigm, ML programs are mutable, thus can be manipulated easily by another program. As a result, AutoML can be reformulated as an automated process of symbolic manipulation. With this formulation, we decouple the triangle of the search algorithm, the search space and the child program. This decoupling makes it easy to change the search space and search algorithm (without and with weight sharing), as well as to add search capabilities to existing code and implement complex search flows. We then introduce PyGlove, a new Python library that implements this paradigm. Through case studies on ImageNet and NAS-Bench-101, we show that with PyGlove users can easily convert a static program into a search space, quickly iterate on the search spaces and search algorithms, and craft complex search flows to achieve better results.
We present a weakest-precondition-style calculus for reasoning about the expected values (pre-expectations) of emph{mixed-sign unbounded} random variables after execution of a probabilistic program. The semantics of a while-loop is well-defined as th e limit of iteratively applying a functional to a zero-element just as in the traditional weakest pre-expectation calculus, even though a standard least fixed point argument is not applicable in this context. A striking feature of our semantics is that it is always well-defined, even if the expected values do not exist. We show that the calculus is sound, allows for compositional reasoning, and present an invariant-based approach for reasoning about pre-expectations of loops.
Many real world tasks such as reasoning and physical interaction require identification and manipulation of conceptual entities. A first step towards solving these tasks is the automated discovery of distributed symbol-like representations. In this p aper, we explicitly formalize this problem as inference in a spatial mixture model where each component is parametrized by a neural network. Based on the Expectation Maximization framework we then derive a differentiable clustering method that simultaneously learns how to group and represent individual entities. We evaluate our method on the (sequential) perceptual grouping task and find that it is able to accurately recover the constituent objects. We demonstrate that the learned representations are useful for next-step prediction.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا