ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs

93   0   0.0 ( 0 )
 نشر من قبل Runzhong Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Combinatorial Optimization (CO) has been a long-standing challenging research topic featured by its NP-hard nature. Traditionally such problems are approximately solved with heuristic algorithms which are usually fast but may sacrifice the solution quality. Currently, machine learning for combinatorial optimization (MLCO) has become a trending research topic, but most existing MLCO methods treat CO as a single-level optimization by directly learning the end-to-end solutions, which are hard to scale up and mostly limited by the capacity of ML models given the high complexity of CO. In this paper, we propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph (e.g. add, delete or modify edges in a graph), fused with a lower-level heuristic algorithm solving on the optimized graph. Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity. The experiments and results on several popular CO problems like Directed Acyclic Graph scheduling, Graph Edit Distance and Hamiltonian Cycle Problem show its effectiveness over manually designed heuristics and single-level learning methods.

قيم البحث

اقرأ أيضاً

The design of good heuristics or approximation algorithms for NP-hard combinatorial optimization problems often requires significant specialized knowledge and trial-and-error. Can we automate this challenging, tedious process, and learn the algorithm s instead? In many real-world applications, it is typically the case that the same optimization problem is solved again and again on a regular basis, maintaining the same problem structure but differing in the data. This provides an opportunity for learning heuristic algorithms that exploit the structure of such recurring problems. In this paper, we propose a unique combination of reinforcement learning and graph embedding to address this challenge. The learned greedy policy behaves like a meta-algorithm that incrementally constructs a solution, and the action is determined by the output of a graph embedding network capturing the current state of the solution. We show that our framework can be applied to a diverse range of optimization problems over graphs, and learns effective algorithms for the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.
In recent years, gradient-based methods for solving bi-level optimization tasks have drawn a great deal of interest from the machine learning community. However, to calculate the gradient of the best response, existing research always relies on the s ingleton of the lower-level solution set (a.k.a., Lower-Level Singleton, LLS). In this work, by formulating bi-level models from an optimistic bi-level viewpoint, we first establish a novel Bi-level Descent Aggregation (BDA) framework, which aggregates hierarchical objectives of both upper level and lower level. The flexibility of our framework benefits from the embedded replaceable task-tailored iteration dynamics modules, thereby capturing a wide range of bi-level learning tasks. Theoretically, we derive a new methodology to prove the convergence of BDA framework without the LLS restriction. Besides, the new proof recipe we propose is also engaged to improve the convergence results of conventional gradient-based bi-level methods under the LLS simplification. Furthermore, we employ a one-stage technique to accelerate the back-propagation calculation in a numerical manner. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed algorithm for hyper-parameter optimization and meta-learning tasks.
A common strategy in modern learning systems is to learn a representation that is useful for many tasks, a.k.a. representation learning. We study this strategy in the imitation learning setting for Markov decision processes (MDPs) where multiple expe rts trajectories are available. We formulate representation learning as a bi-level optimization problem where the outer optimization tries to learn the joint representation and the inner optimization encodes the imitation learning setup and tries to learn task-specific parameters. We instantiate this framework for the imitation learning settings of behavior cloning and observation-alone. Theoretically, we show using our framework that representation learning can provide sample complexity benefits for imitation learning in both settings. We also provide proof-of-concept experiments to verify our theory.
In this paper we present an algorithmic framework for solving a class of combinatorial optimization problems on graphs with bounded pathwidth. The problems are NP-hard in general, but solvable in linear time on this type of graphs. The problems are r elevant for assessing network reliability and improving the networks performance and fault tolerance. The main technique considered in this paper is dynamic programming.
In computer science, there exist a large number of optimization problems defined on graphs, that is to find a best node state configuration or a network structure such that the designed objective function is optimized under some constraints. However, these problems are notorious for their hardness to solve because most of them are NP-hard or NP-complete. Although traditional general methods such as simulated annealing (SA), genetic algorithms (GA) and so forth have been devised to these hard problems, their accuracy and time consumption are not satisfying in practice. In this work, we proposed a simple, fast, and general algorithm framework based on advanced automatic differentiation technique empowered by deep learning frameworks. By introducing Gumbel-softmax technique, we can optimize the objective function directly by gradient descent algorithm regardless of the discrete nature of variables. We also introduce evolution strategy to parallel version of our algorithm. We test our algorithm on three representative optimization problems on graph including modularity optimization from network science, Sherrington-Kirkpatrick (SK) model from statistical physics, maximum independent set (MIS) and minimum vertex cover (MVC) problem from combinatorial optimization on graph. High-quality solutions can be obtained with much less time consuming compared to traditional approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا