ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Annealing with Trigger Hamiltonians: Application to 2-SAT and Nonstoquastic Problems

59   0   0.0 ( 0 )
 نشر من قبل Vrinda Mehta
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the performance of quantum annealing for two sets of problems, namely, 2-satisfiability (2-SAT) problems represented by Ising-type Hamiltonians, and nonstoquastic problems which are obtained by adding extra couplings to the 2-SAT problem Hamiltonians. In addition, we add to the transverse Ising-type Hamiltonian used for quantum annealing a third term, the trigger Hamiltonian with ferromagnetic or antiferromagnetic couplings, which vanishes at the beginning and end of the annealing process. We also analyze some problem instances using the energy spectrum, average energy or overlap of the state during the evolution with the instantaneous low lying eigenstates of the Hamiltonian, and identify some non-adiabatic mechanisms which can enhance the performance of quantum annealing.



قيم البحث

اقرأ أيضاً

We study the effect of the anneal path control per qubit, a new user control feature offered on the D-Wave 2000Q quantum annealer, on the performance of quantum annealing for solving optimization problems by numerically solving the time-dependent Sch rodinger equation for the time-dependent Hamiltonian modeling the annealing problems. The anneal path control is thereby modeled as a modified linear annealing scheme, resulting in an advanced and retarded scheme. The considered optimization problems are 2-SAT problems with 12 Boolean variables, a known unique ground state and a highly degenerate first excited state. We show that adjustment of the anneal path control can result in a widening of the minimal spectral gap by one or two orders of magnitude and an enhancement of the success probability of finding the solution of the optimization problem. We scrutinize various iterative methods based on the spin floppiness, the average spin value, and on the average energy and describe their performance in boosting the quantum annealing process.
We propose a novel hybrid quantum-classical approach to calculate Graver bases, which have the potential to solve a variety of hard linear and non-linear integer programs, as they form a test set (optimality certificate) with very appealing propertie s. The calculation of Graver bases is exponentially hard (in general) on classical computers, so they not used for solving practical problems on commercial solvers. With a quantum annealer, however, it may be a viable approach to use them. We test two hybrid quantum-classical algorithms (on D-Wave)--one for computing Graver basis and a second for optimizing non-linear integer programs that utilize Graver bases--to understand the strengths and limitations of the practical quantum annealers available today. Our experiments suggest that with a modest increase in coupler precision--along with near-term improvements in the number of qubits and connectivity (density of hardware graph) that are expected--the ability to outperform classical best-in-class algorithms is within reach, with respect to non-linear integer optimization.
In order to treat all-to-all connected quadratic binary optimization problems (QUBO) with hardware quantum annealers, an embedding of the original problem is required due to the sparsity of the hardwares topology. Embedding fully-connected graphs -- typically found in industrial applications -- incurs a quadratic space overhead and thus a significant overhead in the time to solution. Here we investigate this embedding penalty of established planar embedding schemes such as minor embedding on a square lattice, minor embedding on a Chimera graph, and the Lechner-Hauke-Zoller scheme using simulated quantum annealing on classical hardware. Large-scale quantum Monte Carlo simulation suggest a polynomial time-to-solution overhead. Our results demonstrate that standard analog quantum annealing hardware is at a disadvantage in comparison to classical digital annealers, as well as gate-model quantum annealers and could also serve as benchmark for improvements of the standard quantum annealing protocol.
59 - Kentaro Imafuku 2019
Annealing approach to quantum tomography is theoretically proposed. First, based on the maximum entropy principle, we introduce classical parameters to combine quantum models (or quantum states) given a prior for potentially representing the unknown target state. Then, we formulate the quantum tomography as an optimization problem on the classical parameters, by employing relative entropy of the parametrized state with the target state as the objective function to be minimized. We show that the objective function is physically implementable, in a theoretical sense at least, as an effective Hamiltonian to be induced by physical interactions of the system with environment systems being prepared in the target state. Corollary, applying quantum annealing to the effective Hamiltonian, we can execute quantum tomography by obtaining the ground state that gives the optimal parameters.
A significant challenge in quantum annealing is to map a real-world problem onto a hardware graph of limited connectivity. If the maximum degree of the problem graph exceeds the maximum degree of the hardware graph, one employs minor embedding in whi ch each logical qubit is mapped to a tree of physical qubits. Pairwise interactions between physical qubits in the tree are set to be ferromagnetic with some coupling strength $F<0$. Here we address the question of what value $F$ should take in order to maximise the probability that the annealer finds the correct ground-state of an Ising problem. The sum of $|F|$ for each logical qubit is defined as minor embedding energy. We confirm experimentally that the ground-state probability is maximised when the minor embedding energy is minimised, subject to the constraint that no domain walls appear in every tree of physical qubits associated with each embedded logical qubit. We further develop an analytical lower bound on $|F|$ which satisfies this constraint and show that it is a tighter bound than that previously derived by Choi (Quantum Inf. Proc. 7 193 (2008)).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا