ﻻ يوجد ملخص باللغة العربية
We study the effect of the anneal path control per qubit, a new user control feature offered on the D-Wave 2000Q quantum annealer, on the performance of quantum annealing for solving optimization problems by numerically solving the time-dependent Schrodinger equation for the time-dependent Hamiltonian modeling the annealing problems. The anneal path control is thereby modeled as a modified linear annealing scheme, resulting in an advanced and retarded scheme. The considered optimization problems are 2-SAT problems with 12 Boolean variables, a known unique ground state and a highly degenerate first excited state. We show that adjustment of the anneal path control can result in a widening of the minimal spectral gap by one or two orders of magnitude and an enhancement of the success probability of finding the solution of the optimization problem. We scrutinize various iterative methods based on the spin floppiness, the average spin value, and on the average energy and describe their performance in boosting the quantum annealing process.
We study the performance of quantum annealing for two sets of problems, namely, 2-satisfiability (2-SAT) problems represented by Ising-type Hamiltonians, and nonstoquastic problems which are obtained by adding extra couplings to the 2-SAT problem Ham
Quantum annealers require accurate control and optimized operation schemes to reduce noise levels, in order to eventually demonstrate a computational advantage over classical algorithms. We study a high coherence four-junction capacitively shunted fl
We propose a novel hybrid quantum-classical approach to calculate Graver bases, which have the potential to solve a variety of hard linear and non-linear integer programs, as they form a test set (optimality certificate) with very appealing propertie
We construct mode-selective effective models describing the interaction of N quantum emitters (QEs) with the localised surface plasmon polaritons (LSPs) supported by a spherical metal nanoparticle (MNP) in an arbitrary geometric arrangement of the QE
A significant challenge in quantum annealing is to map a real-world problem onto a hardware graph of limited connectivity. If the maximum degree of the problem graph exceeds the maximum degree of the hardware graph, one employs minor embedding in whi