ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Optimization over Hybrid Spaces

262   0   0.0 ( 0 )
 نشر من قبل Aryan Deshwal
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of optimizing hybrid structures (mixture of discrete and continuous input variables) via expensive black-box function evaluations. This problem arises in many real-world applications. For example, in materials design optimization via lab experiments, discrete and continuous variables correspond to the presence/absence of primitive elements and their relative concentrations respectively. The key challenge is to accurately model the complex interactions between discrete and continuous variables. In this paper, we propose a novel approach referred as Hybrid Bayesian Optimization (HyBO) by utilizing diffusion kernels, which are naturally defined over continuous and discrete variables. We develop a principled approach for constructing diffusion kernels over hybrid spaces by utilizing the additive kernel formulation, which allows additive interactions of all orders in a tractable manner. We theoretically analyze the modeling strength of additive hybrid kernels and prove that it has the universal approximation property. Our experiments on synthetic and six diverse real-world benchmarks show that HyBO significantly outperforms the state-of-the-art methods.

قيم البحث

اقرأ أيضاً

We consider practical data characteristics underlying federated learning, where unbalanced and non-i.i.d. data from clients have a block-cyclic structure: each cycle contains several blocks, and each clients training data follow block-specific and no n-i.i.d. distributions. Such a data structure would introduce client and block biases during the collaborative training: the single global model would be biased towards the client or block specific data. To overcome the biases, we propose two new distributed optimization algorithms called multi-model parallel SGD (MM-PSGD) and multi-chain parallel SGD (MC-PSGD) with a convergence rate of $O(1/sqrt{NT})$, achieving a linear speedup with respect to the total number of clients. In particular, MM-PSGD adopts the block-mixed training strategy, while MC-PSGD further adds the block-separate training strategy. Both algorithms create a specific predictor for each block by averaging and comparing the historical global models generated in this block from different cycles. We extensively evaluate our algorithms over the CIFAR-10 dataset. Evaluation results demonstrate that our algorithms significantly outperform the conventional federated averaging algorithm in terms of test accuracy, and also preserve robustness for the variance of critical parameters.
Bayesian optimization (BO) is a prominent approach to optimizing expensive-to-evaluate black-box functions. The massive computational capability of edge devices such as mobile phones, coupled with privacy concerns, has led to a surging interest in fe derated learning (FL) which focuses on collaborative training of deep neural networks (DNNs) via first-order optimization techniques. However, some common machine learning tasks such as hyperparameter tuning of DNNs lack access to gradients and thus require zeroth-order/black-box optimization. This hints at the possibility of extending BO to the FL setting (FBO) for agents to collaborate in these black-box optimization tasks. This paper presents federated Thompson sampling (FTS) which overcomes a number of key challenges of FBO and FL in a principled way: We (a) use random Fourier features to approximate the Gaussian process surrogate model used in BO, which naturally produces the parameters to be exchanged between agents, (b) design FTS based on Thompson sampling, which significantly reduces the number of parameters to be exchanged, and (c) provide a theoretical convergence guarantee that is robust against heterogeneous agents, which is a major challenge in FL and FBO. We empirically demonstrate the effectiveness of FTS in terms of communication efficiency, computational efficiency, and practical performance.
Bayesian Optimization is a sample-efficient black-box optimization procedure that is typically applied to problems with a small number of independent objectives. However, in practice we often wish to optimize objectives defined over many correlated o utcomes (or ``tasks). For example, scientists may want to optimize the coverage of a cell tower network across a dense grid of locations. Similarly, engineers may seek to balance the performance of a robot across dozens of different environments via constrained or robust optimization. However, the Gaussian Process (GP) models typically used as probabilistic surrogates for multi-task Bayesian Optimization scale poorly with the number of outcomes, greatly limiting applicability. We devise an efficient technique for exact multi-task GP sampling that combines exploiting Kronecker structure in the covariance matrices with Matherons identity, allowing us to perform Bayesian Optimization using exact multi-task GP models with tens of thousands of correlated outputs. In doing so, we achieve substantial improvements in sample efficiency compared to existing approaches that only model aggregate functions of the outcomes. We demonstrate how this unlocks a new class of applications for Bayesian Optimization across a range of tasks in science and engineering, including optimizing interference patterns of an optical interferometer with more than 65,000 outputs.
Bayesian optimization provides sample-efficient global optimization for a broad range of applications, including automatic machine learning, engineering, physics, and experimental design. We introduce BoTorch, a modern programming framework for Bayes ian optimization that combines Monte-Carlo (MC) acquisition functions, a novel sample average approximation optimization approach, auto-differentiation, and variance reduction techniques. BoTorchs modular design facilitates flexible specification and optimization of probabilistic models written in PyTorch, simplifying implementation of new acquisition functions. Our approach is backed by novel theoretical convergence results and made practical by a distinctive algorithmic foundation that leverages fast predictive distributions, hardware acceleration, and deterministic optimization. We also propose a novel one-shot formulation of the Knowledge Gradient, enabled by a combination of our theoretical and software contributions. In experiments, we demonstrate the improved sample efficiency of BoTorch relative to other popular libraries.
Scarce data is a major challenge to scaling robot learning to truly complex tasks, as we need to generalize locally learned policies over different task contexts. Contextual policy search offers data-efficient learning and generalization by explicitl y conditioning the policy on a parametric context space. In this paper, we further structure the contextual policy representation. We propose to factor contexts into two components: target contexts that describe the task objectives, e.g. target position for throwing a ball; and environment contexts that characterize the environment, e.g. initial position or mass of the ball. Our key observation is that experience can be directly generalized over target contexts. We show that this can be easily exploited in contextual policy search algorithms. In particular, we apply factorization to a Bayesian optimization approach to contextual policy search both in sampling-based and active learning settings. Our simulation results show faster learning and better generalization in various robotic domains. See our supplementary video: https://youtu.be/MNTbBAOufDY.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا