ﻻ يوجد ملخص باللغة العربية
In this paper we present irradiation measurements performed to select a transparent anode substrate that best meets the requirements of an optical readout for a novel detector, the LaGEMPix. The modification of the optical properties of the material due to proton irradiation were studied in soda-lime, fused quartz and fused silica glasses coated with an Indium Tin Oxide layer. The irradiations were performed using the research Beam Transfer Line (BTL) of the IBA Cyclone 18 MeV cyclotron of the Bern University Hospital (Inselspital). We recorded visible scintillation light generated by proton irradiation in the soda-lime and fused quartz samples. We also investigated the darkening of these three glasses and observed radiation-induced colour centres in the soda-lime glass sample. The optical transmission spectra of the samples were measured before and after irradiation. Reductions of 45%, 1% and 0.4% were observed for soda-lime glass, fused quartz and fused silica, respectively (with an associated error of 0.25%). We conclude that the best option for our specific application is the fused silica substrate, which will be the transparent anode for the next generation of the LaGEMPix detector.
We have operated a Medipix2 CMOS readout chip, with amplifying, shaping and charge discriminating front-end electronics integrated on the pixel-level, as a highly segmented direct charge collecting anode in a three-stage gas electron multiplier (Trip
CYGNO is a project realising a cubic meter demonstrator to study the scalability of the performance of the optical approach for the readout of large-volume, GEM-equipped TPC. This is part of the CYGNUS proto-collaboration which aims at constructing a
A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of
For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a
Plasma Display Panels (PDP), the underlying engine of panel plasma television displays, are being investigated for their utility as radiation detectors called Plasma Panel Sensors (PPS). The PPS a novel variant of a micropattern radiation detector, i