ترغب بنشر مسار تعليمي؟ اضغط هنا

Progress in the Development of Plasma Panel Radiation Detectors

122   0   0.0 ( 0 )
 نشر من قبل Erez Etzion
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Robert Ball




اسأل ChatGPT حول البحث

Plasma Display Panels (PDP), the underlying engine of panel plasma television displays, are being investigated for their utility as radiation detectors called Plasma Panel Sensors (PPS). The PPS a novel variant of a micropattern radiation detector, is intended to be a fast, high resolution detector comprised of an array of plasma discharge cells operating in a hermetically sealed gas mixture. We report on the PPS development effort, including recent laboratory measurements.



قيم البحث

اقرأ أيضاً

The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels. It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in plasma display panels, it uses nonreactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (<50-mm RMS) and low cost. In this paper, we report on prototype PPS experimental results in detecting betas, protons, and cosmic muons, and we extrapolate on the PPS potential for applications including the detection of alphas, heavy ions at low-to-medium energy, thermal neutrons, and X-rays.
119 - R. Ball 2014
This article reports on the development and experimental results of commercial plasma display panels adapted for their potential use as micropattern gas radiation detectors. The plasma panel sensors (PPS) design an materials include glass substrates, metal electrodes and inert gas mixtures which provide a physically robust, hermetically-sealed device. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons and thermal neutrons. The results demonstrated rise times and time resolution of a few nanoseconds, as well as sub-millimeter spatial resolution compatible with the pixel pitch.
A radiation detector based on plasma display panel technology, which is the principal component of plasma television displays is presented. Plasma Panel Sensor (PPS) technology is a variant of micropattern gas radiation detectors. The PPS is conceive d as an array of sealed plasma discharge gas cells which can be used for fast response (O(5ns) per pixel), high spatial resolution detection (pixel pitch can be less than 100 micrometer) of ionizing and minimum ionizing particles. The PPS is assembled from non-reactive, intrinsically radiation-hard materials: glass substrates, metal electrodes and inert gas mixtures. We report on the PPS development program, including simulations and design and the first laboratory studies which demonstrate the usage of plasma display panels in measurements of cosmic ray muons, as well as the expansion of experimental results on the detection of betas from radioactive sources.
141 - Alexis Mulski 2017
Plasma panel detectors are a variant of micropattern detectors that are sensitive to ionizing radiation. They are motivated by the design and operation of plasma display panels. The detectors consist of arrays of electrically and optically isolated p ixels defined by metallized cavities embedded in a dielectric substrate. These are hermetically sealed gaseous detectors that use exclusively non-hydrocarbon gas mixtures. The newest variant of these closed-architecture detectors is known as the Microhexcavity plasma panel detector ($mu$Hex) consisting of 2 mm wide, regular close-packed hexagonal pixels each with a circular thick-film anode. The fabrication, staging, and operation of these detectors is described. Initial tests with the $mu$Hex detectors operated in Geiger mode yield Volt-level signals in the presence of ionizing radiation. The spontaneous discharge rate in the absence of a source is roughly 3-4 orders of magnitude lower compared to the rates measured using low energy betas.
134 - Peter S. Friedman 2010
A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا