ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic Fock space coupled cluster study of bismuth electronic structure to extract the Bi nuclear quadrupole moment

58   0   0.0 ( 0 )
 نشر من قبل Leonid Skripnikov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the value of the electric quadrupole moment of $^{209}$Bi extracted from the atomic data. For this, we performed electronic structure calculations for the ground $^4S^o_{3/2}$ and excited $^2P^o_{3/2}$ states of atomic Bi using the Dirac-Coulomb-Breit Hamiltonian and the Fock space coupled cluster method with single, double, and full triple amplitudes for the three-particle Fock space sector. The value of the quadrupole moment of $^{209}$Bi, $Q(^{209}$Bi$)=-418(6)$~mb, derived from the resulting electric field gradient values and available atomic hyperfine splittings is in excellent agreement with molecular data. Due to the availability of the hyperfine constants for unstable isotopes of Bi, current atomic calculation allows also to correct their quadrupole moments.



قيم البحث

اقرأ أيضاً

We present high accuracy relativistic coupled cluster calculations of the P-odd interaction coefficient $W_A$ describing the nuclear anapole moment effect on the molecular electronic structure. The molecule under study, BaF, is considered a promising candidate for the measurement of the nuclear anapole moment, and the preparation for the experiment is now underway [Altunas et al., Phys. Rev. Lett. 120, 142501 (2018)]. Influence of various computational parameters (size of the basis set, treatment of relativistic effects, and treatment of electron correlation) on the calculated $W_A$ coefficient is investigated and a recommended value of 147.7 Hz with an estimated uncertainty of 1.5% is proposed.
Recent improvements in experimental techniques for preparing ultracold molecules that contain alkali atoms (e.g., Li, Na, and K) have been reported. Based on these advances in ultracold molecules, new searches for the electric dipole moment of the el ectron and the scalar-pseudoscalar interaction can be proposed on such systems. We calculate the effective electric fields (Eeff) and the S-PS coefficients (Ws) of SrA and HgA (A = Li, Na, and K) molecules at the Dirac-Fock (DF) and the relativistic coupled cluster (RCC) levels. We elaborate on the following points: i) Basis set dependence of the molecular properties in HgA, ii) Analysis of Eeff and Ws in SrA and HgA, and comparison with their fluoride and hydride counterparts, iii) Ratio of Ws to Eeff (Ws/Eeff) at the DF and the correlation RCC levels of theory.
The values of nuclear electric quadrupole moment are different by about 7% for 87Sr nucleus between the recommended value [N. J. Stone, At. Data Nucl. Data Tables 111-112, 1 (2016); P. Pyykko, Mol. Phys. 116, 1328 (2018)] and earlier results [e.g. A. M. Matensson-Pendrill, J. Phys. B: At. Mol. Opt. Phys. 35, 917 (2002); K. Z. Yu et al., Phys. Rev. A 70, 012506 (2004)]. In this work, we reported a new value, Q(87Sr) = 328(4) mb, making use of our calculated electric field gradients produced by electrons at nucleus in combination with experimental values for hyperfine structures of the 5s5p 3P1,2 states of the neutral Sr atom. In the framework of the multi-configuration Dirac-Hartree-Fock theory, the electron correlations were taken into account systematically so as to control the uncertainties of the electric field gradient at about 1% level. The present result is different from the recommended value, but in excellent agreement with those by Matensson-Pendrill and Yu et al.. We would recommend the present Q value as a reference for 87Sr.
Hyperfine structure (HFS) of atomic energy levels arises due to interactions of atomic electrons with a hierarchy of nuclear multipole moments, including magnetic dipole, electric quadrupole and higher rank moments. Recently, a determination of the m agnetic octupole moment of the $^{173}mathrm{Yb}$ nucleus was reported from HFS measurements in neutral ${}^{173}mathrm{Yb}$ [PRA 87, 012512 (2013)], and is four orders of magnitude larger than the nuclear theory prediction. Considering this substantial discrepancy between the spectroscopically extracted value and nuclear theory, here we propose to use an alternative system to resolve this tension, a singly charged ion of the same $^{173}mathrm{Yb}$ isotope. Utilizing the substantial suite of tools developed around $mathrm{Yb}^+$ for quantum information applications, we propose to extract nuclear octupole and hexadecapole moments from measuring hyperfine splittings in the extremely long lived first excited state ($4f^{13}(^2!F^{o})6s^2$, $J=7/2$) of $^{173}mathrm{Yb}^+$. We present results of atomic structure calculations in support of the proposed measurements.
With increasing demand for accurate calculation of isotope shifts of atomic systems for fundamental and nuclear structure research, an analytic energy derivative approach is presented in the relativistic coupled-cluster theory framework to determine the atomic field shift and mass shift factors. This approach allows the determination of expectation values of atomic operators, overcoming fundamental problems that are present in existing atomic physics methods, i.e. it satisfies the Hellmann-Feynman theorem, does not involve any non-terminating series, and is free from choice of any perturbative parameter. As a proof of concept, the developed analytic response relativistic coupled-cluster theory has been applied to determine mass shift and field shift factors for different atomic states of indium. High-precision isotope-shift measurements of $^{104-127}$In were performed in the 246.8-nm (5p $^2$P$_{3/2}$ $rightarrow$ 9s $^2$S$_{1/2}$) and 246.0-nm (5p $^2$P$_{1/2}$ $rightarrow$ 8s $^2$S$_{1/2}$) transitions to test our theoretical results. An excellent agreement between the theoretical and measured values is found, which is known to be challenging in multi-electron atoms. The calculated atomic factors allowed an accurate determination of the nuclear charge radii of the ground and isomeric states of the $^{104-127}$In isotopes, providing an isotone-independent comparison of the absolute charge radii.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا