ﻻ يوجد ملخص باللغة العربية
The values of nuclear electric quadrupole moment are different by about 7% for 87Sr nucleus between the recommended value [N. J. Stone, At. Data Nucl. Data Tables 111-112, 1 (2016); P. Pyykko, Mol. Phys. 116, 1328 (2018)] and earlier results [e.g. A. M. Matensson-Pendrill, J. Phys. B: At. Mol. Opt. Phys. 35, 917 (2002); K. Z. Yu et al., Phys. Rev. A 70, 012506 (2004)]. In this work, we reported a new value, Q(87Sr) = 328(4) mb, making use of our calculated electric field gradients produced by electrons at nucleus in combination with experimental values for hyperfine structures of the 5s5p 3P1,2 states of the neutral Sr atom. In the framework of the multi-configuration Dirac-Hartree-Fock theory, the electron correlations were taken into account systematically so as to control the uncertainties of the electric field gradient at about 1% level. The present result is different from the recommended value, but in excellent agreement with those by Matensson-Pendrill and Yu et al.. We would recommend the present Q value as a reference for 87Sr.
Effect of the electric quadrupole moment, $Q$, is studied for positron-atom bound systems. It is demonstrated that for $Q >50$ a.u. the electric quadrupole potential is sufficiently strong to bind positron (or electron) even in the absence of the dip
The multiconfiguration Dirac-Hartree-Fock theory (MCDHF) has been employed to calculate the electric dipole moment of the 7s6d 3D2 state of radium induced by the nuclear Schiff moment. The results are dominated by valence and core-valence electron co
The nuclear quadrupole moment of the I=3/2- excited nuclear state of 57Fe at 14.41 keV, important in Mossbauer spectroscopy, is determined from the large-scale nuclear shell-model calculations for 57Fe and also from the electronic ab initio and densi
We report the value of the electric quadrupole moment of $^{209}$Bi extracted from the atomic data. For this, we performed electronic structure calculations for the ground $^4S^o_{3/2}$ and excited $^2P^o_{3/2}$ states of atomic Bi using the Dirac-Co
We present high accuracy relativistic coupled cluster calculations of the P-odd interaction coefficient $W_A$ describing the nuclear anapole moment effect on the molecular electronic structure. The molecule under study, BaF, is considered a promising