ﻻ يوجد ملخص باللغة العربية
Explainable machine learning (ML) has gained traction in recent years due to the increasing adoption of ML-based systems in many sectors. Counterfactual explanations (CFEs) provide ``what if feedback of the form ``if an input datapoint were $x$ instead of $x$, then an ML-based systems output would be $y$ instead of $y$. CFEs are attractive due to their actionable feedback, amenability to existing legal frameworks, and fidelity to the underlying ML model. Yet, current CFE approaches are single shot -- that is, they assume $x$ can change to $x$ in a single time period. We propose a novel stochastic-control-based approach that generates sequential CFEs, that is, CFEs that allow $x$ to move stochastically and sequentially across intermediate states to a final state $x$. Our approach is model agnostic and black box. Furthermore, calculation of CFEs is amortized such that once trained, it applies to multiple datapoints without the need for re-optimization. In addition to these primary characteristics, our approach admits optional desiderata such as adherence to the data manifold, respect for causal relations, and sparsity -- identified by past research as desirable properties of CFEs. We evaluate our approach using three real-world datasets and show successful generation of sequential CFEs that respect other counterfactual desiderata.
We present a new method for counterfactual explanations (CFEs) based on Bayesian optimisation that applies to both classification and regression models. Our method is a globally convergent search algorithm with support for arbitrary regression models
In this work, we develop a technique to produce counterfactual visual explanations. Given a query image $I$ for which a vision system predicts class $c$, a counterfactual visual explanation identifies how $I$ could change such that the system would o
Methods to find counterfactual explanations have predominantly focused on one step decision making processes. In this work, we initiate the development of methods to find counterfactual explanations for decision making processes in which multiple, de
The continued improvements in the predictive accuracy of machine learning models have allowed for their widespread practical application. Yet, many decisions made with seemingly accurate models still require verification by domain experts. In additio
Massive deployment of Graph Neural Networks (GNNs) in high-stake applications generates a strong demand for explanations that are robust to noise and align well with human intuition. Most existing methods generate explanations by identifying a subgra