ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Gaussian Mixtures with Generalised Linear Models: Precise Asymptotics in High-dimensions

255   0   0.0 ( 0 )
 نشر من قبل Gabriele Sicuro
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Generalised linear models for multi-class classification problems are one of the fundamental building blocks of modern machine learning tasks. In this manuscript, we characterise the learning of a mixture of $K$ Gaussians with generic means and covariances via empirical risk minimisation (ERM) with any convex loss and regularisation. In particular, we prove exact asymptotics characterising the ERM estimator in high-dimensions, extending several previous results about Gaussian mixture classification in the literature. We exemplify our result in two tasks of interest in statistical learning: a) classification for a mixture with sparse means, where we study the efficiency of $ell_1$ penalty with respect to $ell_2$; b) max-margin multi-class classification, where we characterise the phase transition on the existence of the multi-class logistic maximum likelihood estimator for $K>2$. Finally, we discuss how our theory can be applied beyond the scope of synthetic data, showing that in different cases Gaussian mixtures capture closely the learning curve of classification tasks in real data sets.



قيم البحث

اقرأ أيضاً

Understanding the impact of data structure on the computational tractability of learning is a key challenge for the theory of neural networks. Many theoretical works do not explicitly model training data, or assume that inputs are drawn component-wis e independently from some simple probability distribution. Here, we go beyond this simple paradigm by studying the performance of neural networks trained on data drawn from pre-trained generative models. This is possible due to a Gaussian equivalence stating that the key metrics of interest, such as the training and test errors, can be fully captured by an appropriately chosen Gaussian model. We provide three strands of rigorous, analytical and numerical evidence corroborating this equivalence. First, we establish rigorous conditions for the Gaussian equivalence to hold in the case of single-layer generative models, as well as deterministic rates for convergence in distribution. Second, we leverage this equivalence to derive a closed set of equations describing the generalisation performance of two widely studied machine learning problems: two-layer neural networks trained using one-pass stochastic gradient descent, and full-batch pre-learned features or kernel methods. Finally, we perform experiments demonstrating how our theory applies to deep, pre-trained generative models. These results open a viable path to the theoretical study of machine learning models with realistic data.
Single Index Models (SIMs) are simple yet flexible semi-parametric models for classification and regression. Response variables are modeled as a nonlinear, monotonic function of a linear combination of features. Estimation in this context requires le arning both the feature weights, and the nonlinear function. While methods have been described to learn SIMs in the low dimensional regime, a method that can efficiently learn SIMs in high dimensions has not been forthcoming. We propose three variants of a computationally and statistically efficient algorithm for SIM inference in high dimensions. We establish excess risk bounds for the proposed algorithms and experimentally validate the advantages that our SIM learning methods provide relative to Generalized Linear Model (GLM) and low dimensional SIM based learning methods.
Graphical model selection in Markov random fields is a fundamental problem in statistics and machine learning. Two particularly prominent models, the Ising model and Gaussian model, have largely developed in parallel using different (though often rel ated) techniques, and several practical algorithms with rigorous sample complexity bounds have been established for each. In this paper, we adapt a recently proposed algorithm of Klivans and Meka (FOCS, 2017), based on the method of multiplicative weight updates, from the Ising model to the Gaussian model, via non-trivial modifications to both the algorithm and its analysis. The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature, has a low runtime $O(mp^2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
We consider the problem of Gaussian mixture clustering in the high-dimensional limit where the data consists of $m$ points in $n$ dimensions, $n,m rightarrow infty$ and $alpha = m/n$ stays finite. Using exact but non-rigorous methods from statistical physics, we determine the critical value of $alpha$ and the distance between the clusters at which it becomes information-theoretically possible to reconstruct the membership into clusters better than chance. We also determine the accuracy achievable by the Bayes-optimal estimation algorithm. In particular, we find that when the number of clusters is sufficiently large, $r > 4 + 2 sqrt{alpha}$, there is a gap between the threshold for information-theoretically optimal performance and the threshold at which known algorithms succeed.
We analyze the connection between minimizers with good generalizing properties and high local entropy regions of a threshold-linear classifier in Gaussian mixtures with the mean squared error loss function. We show that there exist configurations tha t achieve the Bayes-optimal generalization error, even in the case of unbalanced clusters. We explore analytically the error-counting loss landscape in the vicinity of a Bayes-optimal solution, and show that the closer we get to such configurations, the higher the local entropy, implying that the Bayes-optimal solution lays inside a wide flat region. We also consider the algorithmically relevant case of targeting wide flat minima of the (differentiable) mean squared error loss. Our analytical and numerical results show not only that in the balanced case the dependence on the norm of the weights is mild, but also, in the unbalanced case, that the performances can be improved.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا