ﻻ يوجد ملخص باللغة العربية
Aims. We aim to detect molecules in the atmosphere of the young forming companion PDS70 b by searching for atmospheric absorption features typical of substellar objects. Methods. We obtained medium-resolution (R$approx$5075) spectra of the PDS70 planetary system with the SINFONI integral field spectrograph at the Very Large Telescope. We applied molecular mapping, based on cross-correlation with synthetic spectra, to identify signatures of molecular species in the atmosphere of the planet. Results. Although the planet emission is clearly detected when resampling the data to lower resolution, no molecular species could be identified with the cross-correlation technique. We estimated upper limits on the abundances of H$_2$O, CO and CH$_4$ ($log(X_mathrm{mol}) < -4.0$, $-4.1$ and $-4.9$, respectively) assuming a clear atmosphere, and we explored the impact of clouds, which increase the upper limits by a factor up to 0.7 dex. Assuming that the observations directly probe the planets atmosphere, we found a lack of molecular species compared to other directly imaged companions or field objects. Under the assumption that the planet atmosphere presents similar characteristics to other directly imaged planets, we conclude that a dusty environment surrounds the planet, effectively obscuring any feature generated in its atmosphere. We quantify the extinction necessary to impede the detection ($A_Vapprox16-17$ mag), pointing to the possibility of higher optical thickness than previously estimated from other studies. Finally, the non-detection of molecular species conflicts with atmospheric models previously proposed to describe the forming planet. Conclusions. To unveil how giant planets form, a comprehensive approach that includes constraints from multiple techniques needs to be undertaken. Molecular mapping emerges as an alternative to more classical techniques like SED fitting.
Context. PDS 70 is a young (5.4 Myr), nearby (~113 pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a planetary mass companion, PDS70b, within the disk
We present a study on the spatially scanned spectroscopic observations of the transit of GJ 1132 b, a warm ($sim$500 K) Super-Earth (1.13 R$_oplus$) that was obtained with the G141 grism (1.125 - 1.650 $mu$m) of the Wide Field Camera 3 (WFC3) onboard
(Abridged) Near- to mid-IR observations of protoplanetary disks show that the inner regions (<10AU) are rich in small organic volatiles (e.g., C2H2 and HCN). Trends in the data suggest that disks around cooler stars (~3000K) are potentially more carb
During the main phase of evolution of a protoplanetary disk, accretion regulates the inner-disk properties, such as the temperature and mass distribution, and in turn, the physical conditions associated with planet formation. The driving mechanism be
We present a spectro-astrometric survey of molecular gas in the inner regions of 16 protoplanetary disks using CRIRES, the high resolution infrared imaging spectrometer on the Very Large Telescope. Spectro-astrometry with CRIRES measures the spatial