ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecules with ALMA at Planet-forming Scales (MAPS) XVI: Characterizing the impact of the molecular wind on the evolution of the HD 163296 system

96   0   0.0 ( 0 )
 نشر من قبل Alice Booth
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During the main phase of evolution of a protoplanetary disk, accretion regulates the inner-disk properties, such as the temperature and mass distribution, and in turn, the physical conditions associated with planet formation. The driving mechanism behind accretion remains uncertain; however, one promising mechanism is the removal of a fraction of angular momentum via a magnetohydrodynamic (MHD) disk wind launched from the inner tens of astronomical units of the disk. This paper utilizes CO isotopologue emission to study the unique molecular outflow originating from the HD 163296 protoplanetary disk obtained with the Atacama Large Millimeter/submillimeter Array. HD~163296 is one of the most well-studied Class II disks and is proposed to host multiple gas-giant planets. We robustly detect the large-scale rotating outflow in the 12CO J=2-1 and the 13CO J=2-1 and J=1-0 transitions. We constrain the kinematics, the excitation temperature of the molecular gas, and the mass-loss rate. The high ratio of the rates of ejection to accretion (5 - 50), together with the rotation signatures of the flow, provides solid evidence for an MHD disk wind. We find that the angular momentum removal by the wind is sufficient to drive accretion through the inner region of the disk; therefore, accretion driven by turbulent viscosity is not required to explain HD~163296s accretion. The low temperature of the molecular wind and its overall kinematics suggest that the MHD disk wind could be perturbed and shocked by the previously observed high-velocity atomic jet. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.

قيم البحث

اقرأ أيضاً

Understanding the temperature structure of protoplanetary disks is key to interpreting observations, predicting the physical and chemical evolution of the disk, and modeling planet formation processes. In this study, we constrain the two-dimensional thermal structure of the disk around Herbig Ae star HD 163296. Using the thermo-chemical code RAC2D, we derive a thermal structure that reproduces spatially resolved ALMA observations (~0.12 arcsec (13 au) - 0.25 arcsec (26 au)) of CO J = 2-1, 13CO J = 1-0, 2-1, C18O J = 1-0, 2-1, and C17O J = 1-0, the HD J = 1-0 flux upper limit, the spectral energy distribution (SED), and continuum morphology. The final model incorporates both a radial depletion of CO motivated by a time scale shorter than typical CO gas-phase chemistry (0.01 Myr) and an enhanced temperature near the surface layer of the the inner disk (z/r <= 0.21). This model agrees with the majority of the empirically derived temperatures and observed emitting surfaces derived from the J = 2-1 CO observations. We find an upper limit for the disk mass of 0.35 Msun, using the upper limit of the HD J = 1-0 and J = 2-1 flux. With our final thermal structure, we explore the impact that gaps have on the temperature structure constrained by observations of the resolved gaps. Adding a large gap in the gas and small dust additionally increases gas temperature in the gap by only 5-10%. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program provides a detailed, high resolution (${sim}$10-20 au) view of molecular line emission in five protoplanetary disks at spatial scales relevant for planet formation. Here, we presen t a systematic analysis of chemical substructures in 18 molecular lines toward the MAPS sources: IM Lup, GM Aur, AS 209, HD 163296, and MWC 480. We identify more than 200 chemical substructures, which are found at nearly all radii where line emission is detected. A wide diversity of radial morphologies - including rings, gaps, and plateaus - is observed both within each disk and across the MAPS sample. This diversity in line emission profiles is also present in the innermost 50 au. Overall, this suggests that planets form in varied chemical environments both across disks and at different radii within the same disk. Interior to 150 au, the majority of chemical substructures across the MAPS disks are spatially coincident with substructures in the millimeter continuum, indicative of physical and chemical links between the disk midplane and warm, elevated molecular emission layers. Some chemical substructures in the inner disk and most chemical substructures exterior to 150 au cannot be directly linked to dust substructure, however, which indicates that there are also other causes of chemical substructures, such as snowlines, gradients in UV photon fluxes, ionization, and radially-varying elemental ratios. This implies that chemical substructures could be developed into powerful probes of different disk characteristics, in addition to influencing the environments within which planets assemble. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
We explore the dynamical structure of the protoplanetary disks surrounding HD 163296 and MWC 480 as part of the Molecules with ALMA at Planet Forming Scales (MAPS) large program. Using the $J = 2-1$ transitions of $^{12}$CO, $^{13}$CO and C$^{18}$O i maged at spatial resolutions of $sim 0.^{prime prime}15$ and with a channel spacing of $200$ ${rm m,s^{-1}}$, we find perturbations from Keplerian rotation in the projected velocity fields of both disks ($lesssim!5%$ of the local Keplerian velocity), suggestive of large-scale (10s of au in size), coherent flows. By accounting for the azimuthal dependence on the projection of the velocity field, the velocity fields were decomposed into azimuthally averaged orthogonal components, $v_{phi}$, $v_r$ and $v_z$. Using the optically thick $^{12}$CO emission as a probe of the gas temperature, local variations of $approx! 3$ K ($approx! 5 %$ relative changes) were observed and found to be associated with the kinematic substructures. The MWC 480 disk hosts a suite of tightly wound spiral arms. The spirals arms, in conjunction with the highly localized perturbations in the gas velocity structure (kinematic planetary signatures), indicate a giant planet, $sim! 1$ $M_{rm Jup}$, at a radius of $approx 245$ au. In the disk of HD 163296, the kinematic substructures were consistent with previous studies of Pinte et al. (2018a) and Teague et al. (2018a) advocating for multiple $sim! 1$ $M_{rm Jup}$ planets embedded in the disk. These results demonstrate that molecular line observations that characterize the dynamical structure of disks can be used to search for the signatures of embedded planets. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
Planets form and obtain their compositions in dust and gas-rich disks around young stars, and the outcome of this process is intimately linked to the disk chemical properties. The distributions of molecules across disks regulate the elemental composi tions of planets, including C/N/O/S ratios and metallicity (O/H and C/H), as well as access to water and prebiotically relevant organics. Emission from molecules also encodes information on disk ionization levels, temperature structures, kinematics, and gas surface densities, which are all key ingredients of disk evolution and planet formation models. The Molecules with ALMA at Planet-forming Scales (MAPS) ALMA Large Program was designed to expand our understanding of the chemistry of planet formation by exploring disk chemical structures down to 10 au scales. The MAPS program focuses on five disks - around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480 - in which dust substructures are detected and planet formation appears to be ongoing. We observed these disks in 4 spectral setups, which together cover ~50 lines from over 20 different species. This paper introduces the ApJS MAPS Special Issue by presenting an overview of the program motivation, disk sample, observational details, and calibration strategy. We also highlight key results, including discoveries of links between dust, gas, and chemical sub-structures, large reservoirs of nitriles and other organics in the inner disk regions, and elevated C/O ratios across most disks. We discuss how this collection of results is reshaping our view of the chemistry of planet formation.
The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program provides a unique opportunity to study the vertical distribution of gas, chemistry, and temperature in the protoplanetary disks around IM Lup, GM Aur, AS 209, HD 163296, and MWC 48 0. By using the asymmetry of molecular line emission relative to the disk major axis, we infer the emission height ($z$) above the midplane as a function of radius ($r$). Using this method, we measure emitting surfaces for a suite of CO isotopologues, HCN, and C$_2$H. We find that $^{12}$CO emission traces the most elevated regions with $z/r > 0.3$, while emission from the less abundant $^{13}$CO and C$^{18}$O probes deeper into the disk at altitudes of $z/r lesssim 0.2$. C$_2$H and HCN have lower opacities and SNRs, making surface fitting more difficult, and could only be reliably constrained in AS 209, HD 163296, and MWC 480, with $z/r lesssim 0.1$, i.e., relatively close to the planet-forming midplanes. We determine peak brightness temperatures of the optically thick CO isotopologues and use these to trace 2D disk temperature structures. Several CO temperature profiles and emission surfaces show dips in temperature or vertical height, some of which are associated with gaps and rings in line and/or continuum emission. These substructures may be due to local changes in CO column density, gas surface density, or gas temperatures, and detailed thermo-chemical models are necessary to better constrain their origins and relate the chemical compositions of elevated disk layers with those of planet-forming material in disk midplanes. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا