ﻻ يوجد ملخص باللغة العربية
Data association is important in the point cloud registration. In this work, we propose to solve the partial-to-partial registration from a new perspective, by introducing multi-level feature interactions between the source and the reference clouds at the feature extraction stage, such that the registration can be realized without the attentions or explicit mask estimation for the overlapping detection as adopted previously. Specifically, we present FINet, a feature interaction-based structure with the capability to enable and strengthen the information associating between the inputs at multiple stages. To achieve this, we first split the features into two components, one for rotation and one for translation, based on the fact that they belong to different solution spaces, yielding a dual branches structure. Second, we insert several interaction modules at the feature extractor for the data association. Third, we propose a transformation sensitivity loss to obtain rotation-attentive and translation-attentive features. Experiments demonstrate that our method performs higher precision and robustness compared to the state-of-the-art traditional and learning-based methods. Code will be available at https://github.com/HaoXu-Work/FINet.
To eliminate the problems of large dimensional differences, big semantic gap, and mutual interference caused by hybrid features, in this paper, we propose a novel Multi-Features Guidance Network for partial-to-partial point cloud registration(MFG). T
Point cloud registration is a key task in many computational fields. Previous correspondence matching based methods require the inputs to have distinctive geometric structures to fit a 3D rigid transformation according to point-wise sparse feature ma
We propose a self-supervised method for partial point set registration. While recent proposed learning-based methods have achieved impressive registration performance on the full shape observations, these methods mostly suffer from performance degrad
The performance of surface registration relies heavily on the metric used for the alignment error between the source and target shapes. Traditionally, such a metric is based on the point-to-point or point-to-plane distance from the points on the sour
We present Free Point Transformer (FPT) - a deep neural network architecture for non-rigid point-set registration. Consisting of two modules, a global feature extraction module and a point transformation module, FPT does not assume explicit constrain