ترغب بنشر مسار تعليمي؟ اضغط هنا

FINet: Dual Branches Feature Interaction for Partial-to-Partial Point Cloud Registration

85   0   0.0 ( 0 )
 نشر من قبل Hao Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data association is important in the point cloud registration. In this work, we propose to solve the partial-to-partial registration from a new perspective, by introducing multi-level feature interactions between the source and the reference clouds at the feature extraction stage, such that the registration can be realized without the attentions or explicit mask estimation for the overlapping detection as adopted previously. Specifically, we present FINet, a feature interaction-based structure with the capability to enable and strengthen the information associating between the inputs at multiple stages. To achieve this, we first split the features into two components, one for rotation and one for translation, based on the fact that they belong to different solution spaces, yielding a dual branches structure. Second, we insert several interaction modules at the feature extractor for the data association. Third, we propose a transformation sensitivity loss to obtain rotation-attentive and translation-attentive features. Experiments demonstrate that our method performs higher precision and robustness compared to the state-of-the-art traditional and learning-based methods. Code will be available at https://github.com/HaoXu-Work/FINet.



قيم البحث

اقرأ أيضاً

To eliminate the problems of large dimensional differences, big semantic gap, and mutual interference caused by hybrid features, in this paper, we propose a novel Multi-Features Guidance Network for partial-to-partial point cloud registration(MFG). T he proposed network mainly includes four parts: keypoints feature extraction, correspondences searching, correspondences credibility computation, and SVD, among which correspondences searching and correspondence credibility computation are the cores of the network. Unlike the previous work, we utilize the shape features and the spatial coordinates to guide correspondences search independently and fusing the matching results to obtain the final matching matrix. In the correspondences credibility computation module, based on the conflicted relationship between the features matching matrix and the coordinates matching matrix, we score the reliability for each correspondence, which can reduce the impact of mismatched or non-matched points. Experimental results show that our network outperforms the current state-of-the-art while maintaining computational efficiency.
Point cloud registration is a key task in many computational fields. Previous correspondence matching based methods require the inputs to have distinctive geometric structures to fit a 3D rigid transformation according to point-wise sparse feature ma tches. However, the accuracy of transformation heavily relies on the quality of extracted features, which are prone to errors with respect to partiality and noise. In addition, they can not utilize the geometric knowledge of all the overlapping regions. On the other hand, previous global feature based approaches can utilize the entire point cloud for the registration, however they ignore the negative effect of non-overlapping points when aggregating global features. In this paper, we present OMNet, a global feature based iterative network for partial-to-partial point cloud registration. We learn overlapping masks to reject non-overlapping regions, which converts the partial-to-partial registration to the registration of the same shape. Moreover, the previously used data is sampled only once from the CAD models for each object, resulting in the same point clouds for the source and reference. We propose a more practical manner of data generation where a CAD model is sampled twice for the source and reference, avoiding the previously prevalent over-fitting issue. Experimental results show that our method achieves state-of-the-art performance compared to traditional and deep learning based methods. Code is available at https://github.com/megvii-research/OMNet.
294 - Xiang Li , Lingjing Wang , Yi Fang 2020
We propose a self-supervised method for partial point set registration. While recent proposed learning-based methods have achieved impressive registration performance on the full shape observations, these methods mostly suffer from performance degrad ation when dealing with partial shapes. To bridge the performance gaps between partial point set registration with full point set registration, we proposed to incorporate a shape completion network to benefit the registration process. To achieve this, we design a latent code for each pair of shapes, which can be regarded as a geometric encoding of the target shape. By doing so, our model does need an explicit feature embedding network to learn the feature encodings. More importantly, both our shape completion network and the point set registration network take the shared latent codes as input, which are optimized along with the parameters of two decoder networks in the training process. Therefore, the point set registration process can thus benefit from the joint optimization process of latent codes, which are enforced to represent the information of full shape instead of partial ones. In the inference stage, we fix the network parameter and optimize the latent codes to get the optimal shape completion and registration results. Our proposed method is pure unsupervised and does not need any ground truth supervision. Experiments on the ModelNet40 dataset demonstrate the effectiveness of our model for partial point set registration.
165 - Zhi Deng , Yuxin Yao , Bailin Deng 2021
The performance of surface registration relies heavily on the metric used for the alignment error between the source and target shapes. Traditionally, such a metric is based on the point-to-point or point-to-plane distance from the points on the sour ce surface to their closest points on the target surface, which is susceptible to failure due to instability of the closest-point correspondence. In this paper, we propose a novel metric based on the intersection points between the two shapes and a random straight line, which does not assume a specific correspondence. We verify the effectiveness of this metric by extensive experiments, including its direct optimization for a single registration problem as well as unsupervised learning for a set of registration problems. The results demonstrate that the algorithms utilizing our proposed metric outperforms the state-of-the-art optimization-based and unsupervised learning-based methods.
We present Free Point Transformer (FPT) - a deep neural network architecture for non-rigid point-set registration. Consisting of two modules, a global feature extraction module and a point transformation module, FPT does not assume explicit constrain ts based on point vicinity, thereby overcoming a common requirement of previous learning-based point-set registration methods. FPT is designed to accept unordered and unstructured point-sets with a variable number of points and uses a model-free approach without heuristic constraints. Training FPT is flexible and involves minimizing an intuitive unsupervised loss function, but supervised, semi-supervised, and partially- or weakly-supervised training are also supported. This flexibility makes FPT amenable to multimodal image registration problems where the ground-truth deformations are difficult or impossible to measure. In this paper, we demonstrate the application of FPT to non-rigid registration of prostate magnetic resonance (MR) imaging and sparsely-sampled transrectal ultrasound (TRUS) images. The registration errors were 4.71 mm and 4.81 mm for complete TRUS imaging and sparsely-sampled TRUS imaging, respectively. The results indicate superior accuracy to the alternative rigid and non-rigid registration algorithms tested and substantially lower computation time. The rapid inference possible with FPT makes it particularly suitable for applications where real-time registration is beneficial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا