ﻻ يوجد ملخص باللغة العربية
We propose a self-supervised method for partial point set registration. While recent proposed learning-based methods have achieved impressive registration performance on the full shape observations, these methods mostly suffer from performance degradation when dealing with partial shapes. To bridge the performance gaps between partial point set registration with full point set registration, we proposed to incorporate a shape completion network to benefit the registration process. To achieve this, we design a latent code for each pair of shapes, which can be regarded as a geometric encoding of the target shape. By doing so, our model does need an explicit feature embedding network to learn the feature encodings. More importantly, both our shape completion network and the point set registration network take the shared latent codes as input, which are optimized along with the parameters of two decoder networks in the training process. Therefore, the point set registration process can thus benefit from the joint optimization process of latent codes, which are enforced to represent the information of full shape instead of partial ones. In the inference stage, we fix the network parameter and optimize the latent codes to get the optimal shape completion and registration results. Our proposed method is pure unsupervised and does not need any ground truth supervision. Experiments on the ModelNet40 dataset demonstrate the effectiveness of our model for partial point set registration.
Matching articulated shapes represented by voxel-sets reduces to maximal sub-graph isomorphism when each set is described by a weighted graph. Spectral graph theory can be used to map these graphs onto lower dimensional spaces and match shapes by ali
Aligning partial views of a scene into a single whole is essential to understanding ones environment and is a key component of numerous robotics tasks such as SLAM and SfM. Recent approaches have proposed end-to-end systems that can outperform tradit
Point cloud registration is the process of aligning a pair of point sets via searching for a geometric transformation. Unlike classical optimization-based methods, recent learning-based methods leverage the power of deep learning for registering a pa
Cross-lingual alignment of word embeddings play an important role in knowledge transfer across languages, for improving machine translation and other multi-lingual applications. Current unsupervised approaches rely on similarities in geometric struct
In this work, we propose UPDesc, an unsupervised method to learn point descriptors for robust point cloud registration. Our work builds upon a recent supervised 3D CNN-based descriptor extraction framework, namely, 3DSmoothNet, which leverages a voxe