ﻻ يوجد ملخص باللغة العربية
One method and two results are contributed to the complete understanding about MHD laminar flow in annular channel with transverse magnetic field in this paper. In terms of the method, a computationally cheap semi-analytic algorithm is developed based on spectral method and perturbation expansion of Reynolds number $Re$. By virtue of the fast computation, numerous calculating examples with almost continuous varying Hartmann number $M$ and cross-section ratio $eta$ are performed to explore the flow patterns that are missed in previous research. In terms of the results of inertialess regime, we establish the average velocity map and electric-flow coupling demarcation in $eta$-$M$ space. Six phenomenological flow patterns and their analytical approaches are identified according to the boundary layers and electrically coupling modes. In terms of the results of inertial regime, we examine the law of decreasing order-of-magnitude of inertial perturbation on primary flow with increasing Hartmann number. It is identified the proposed semi-analytic solution coincides with the $Re^2/M^{4}$ suppression theory of Baylis & Hunt (J. Fluid Mech., vol. 43, 1971, pp. 423-428) in the case of $M<40$. When $M>40$, the pair of trapezoid vortices of secondary flow begins to crack and there is therefore a faster drop in inertial perturbation as $Re^2/M^{5}$, which is a new suppression theory. When $M>80$, the anomalous reverse vortices are fully developed near Shercliff layers resulting in the slower suppression mode of $Re^2/M^{2.5}$, which confirms the prediction of Tabeling & Chabrerie (J. Fluid Mech., vol. 103, 1981, pp. 225-239).
Turbulence modeling is a classical approach to address the multiscale nature of fluid turbulence. Instead of resolving all scales of motion, which is currently mathematically and numerically intractable, reduced models that capture the large-scale be
The transitional regime of plane channel flow is investigated {above} the transitional point below which turbulence is not sustained, using direct numerical simulation in large domains. Statistics of laminar-turbulent spatio-temporal intermittency ar
We present direct numerical simulations of turbulent channel flow with passive Lagrangian polymers. To understand the polymer behavior we investigate the behavior of infinitesimal line elements and calculate the probability distribution function (PDF
Reynolds-averaged Navier-Stokes (RANS) equations are presently one of the most popular models for simulating turbulence. Performing RANS simulation requires additional modeling for the anisotropic Reynolds stress tensor, but traditional Reynolds stre
In order to understand the flow profiles of complex fluids, a crucial issue concerns the emergence of spatial correlations among plastic rearrangements exhibiting cooperativity flow behaviour at the macroscopic level. In this paper, the rate of plast