ﻻ يوجد ملخص باللغة العربية
Fabry-Perot cavities are central to many optical measurement systems. In high precision experiments, such as aLIGO and AdV, coupled cavities are often required leading to complex optical dynamics, particularly when optical imperfections are considered. We show, for the first time, that discrete LCTs can be used to compute circulating optical fields for cavities in which the optics have arbitrary apertures, reflectance and transmittance profiles, and shape. We compare the predictions of LCT models with those of alternative methods. To further highlight the utility of the LCT, we present a case study of point absorbers on the aLIGO mirrors and compare with recently published results.
In this paper, a discrete LCT (DLCT) irrelevant to the sampling periods and without oversampling operation is developed. This DLCT is based on the well-known CM-CC-CM decomposition, that is, implemented by two discrete chirp multiplications (CMs) and
As a generalization of the two-dimensional Fourier transform (2D FT) and 2D fractional Fourier transform, the 2D nonseparable linear canonical transform (2D NsLCT) is useful in optics, signal and image processing. To reduce the digital implementation
Generalized analytic signal associated with the linear canonical transform (LCT) was proposed recently by Fu and Li [Generalized Analytic Signal Associated With Linear Canonical Transform, Opt. Commun., vol. 281, pp. 1468-1472, 2008]. However, most r
We present the current status of the BMV experiment. Our apparatus is based on an up-to-date resonant optical cavity coupled to a transverse magnetic field. We detail our data acquisition and analysis procedure which takes into account the symmetry p
Here the role and influence of aberrations in optical imaging systems employing partially coherent complex scalar fields is studied. Imaging systems require aberrations to yield contrast in the output image. For linear shift-invariant optical systems