ترغب بنشر مسار تعليمي؟ اضغط هنا

DMBGN: Deep Multi-Behavior Graph Networks for Voucher Redemption Rate Prediction

96   0   0.0 ( 0 )
 نشر من قبل Fengtong Xiao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In E-commerce, vouchers are important marketing tools to enhance users engagement and boost sales and revenue. The likelihood that a user redeems a voucher is a key factor in voucher distribution decision. User-item Click-Through-Rate (CTR) models are often applied to predict the user-voucher redemption rate. However, the voucher scenario involves more complicated relations among users, items and vouchers. The users historical behavior in a voucher collection activity reflects users voucher usage patterns, which is nevertheless overlooked by the CTR-based solutions. In this paper, we propose a Deep Multi-behavior Graph Networks (DMBGN) to shed light on this field for the voucher redemption rate prediction. The complex structural user-voucher-item relationships are captured by a User-Behavior Voucher Graph (UVG). User behavior happening both before and after voucher collection is taken into consideration, and a high-level representation is extracted by Higher-order Graph Neural Networks. On top of a sequence of UVGs, an attention network is built which can help to learn users long-term voucher redemption preference. Extensive experiments on three large-scale production datasets demonstrate the proposed DMBGN model is effective, with 10% to 16% relative AUC improvement over Deep Neural Networks (DNN), and 2% to 4% AUC improvement over Deep Interest Network (DIN). Source code and a sample dataset are made publicly available to facilitate future research.



قيم البحث

اقرأ أيضاً

107 - Wenqi Fan , Xiaorui Liu , Wei Jin 2021
Recommender systems aim to provide personalized services to users and are playing an increasingly important role in our daily lives. The key of recommender systems is to predict how likely users will interact with items based on their historical onli ne behaviors, e.g., clicks, add-to-cart, purchases, etc. To exploit these user-item interactions, there are increasing efforts on considering the user-item interactions as a user-item bipartite graph and then performing information propagation in the graph via Graph Neural Networks (GNNs). Given the power of GNNs in graph representation learning, these GNN-based recommendation methods have remarkably boosted the recommendation performance. Despite their success, most existing GNN-based recommender systems overlook the existence of interactions caused by unreliable behaviors (e.g., random/bait clicks) and uniformly treat all the interactions, which can lead to sub-optimal and unstable performance. In this paper, we investigate the drawbacks (e.g., non-adaptive propagation and non-robustness) of existing GNN-based recommendation methods. To address these drawbacks, we propose the Graph Trend Networks for recommendations (GTN) with principled designs that can capture the adaptive reliability of the interactions. Comprehensive experiments and ablation studies are presented to verify and understand the effectiveness of the proposed framework. Our implementation and datasets can be released after publication.
As a new type of e-commerce platform developed in recent years, local consumer service platform provides users with software to consume service to the nearby store or to the home, such as Groupon and Koubei. Different from other common e-commerce pla tforms, the behavior of users on the local consumer service platform is closely related to their real-time local context information. Therefore, building a context-aware user behavior prediction system is able to provide both merchants and users better service in local consumer service platforms. However, most of the previous work just treats the contextual information as an ordinary feature into the prediction model to obtain the prediction list under a specific context, which ignores the fact that the interest of a user in different contexts is often significantly different. Hence, in this paper, we propose a context-aware heterogeneous graph attention network (CHGAT) to dynamically generate the representation of the user and to estimate the probability for future behavior. Specifically, we first construct the meta-path based heterogeneous graphs with the historical behaviors from multiple sources and comprehend heterogeneous vertices in the graph with a novel unified knowledge representing approach. Next, a multi-level attention mechanism is introduced for context-aware aggregation with graph vertices, which contains the vertex-level attention network and the path-level attention network. Both of them aim to capture the semantic correlation between information contained in the graph and the outside real-time contextual information in the search system. Then the model proposed in this paper aggregates specific graphs with their corresponding context features and obtains the representation of user interest under a specific context and input it into the prediction network to finally obtain the predicted probability of user behavior.
125 - Yang Gao , Yi-Fan Li , Yu Lin 2020
Recent advances in research have demonstrated the effectiveness of knowledge graphs (KG) in providing valuable external knowledge to improve recommendation systems (RS). A knowledge graph is capable of encoding high-order relations that connect two o bjects with one or multiple related attributes. With the help of the emerging Graph Neural Networks (GNN), it is possible to extract both object characteristics and relations from KG, which is an essential factor for successful recommendations. In this paper, we provide a comprehensive survey of the GNN-based knowledge-aware deep recommender systems. Specifically, we discuss the state-of-the-art frameworks with a focus on their core component, i.e., the graph embedding module, and how they address practical recommendation issues such as scalability, cold-start and so on. We further summarize the commonly-used benchmark datasets, evaluation metrics as well as open-source codes. Finally, we conclude the survey and propose potential research directions in this rapidly growing field.
In online advertising, users may be exposed to a range of different advertising campaigns, such as natural search or referral or organic search, before leading to a final transaction. Estimating the contribution of advertising campaigns on the users journey is very meaningful and crucial. A marketer could observe each customers interaction with different marketing channels and modify their investment strategies accordingly. Existing methods including both traditional last-clicking methods and recent data-driven approaches for the multi-touch attribution (MTA) problem lack enough interpretation on why the methods work. In this paper, we propose a novel model called DeepMTA, which combines deep learning model and additive feature explanation model for interpretable online multi-touch attribution. DeepMTA mainly contains two parts, the phased-LSTMs based conversion prediction model to catch different time intervals, and the additive feature attribution model combined with shaley values. Additive feature attribution is explanatory that contains a linear function of binary variables. As the first interpretable deep learning model for MTA, DeepMTA considers three important features in the customer journey: event sequence order, event frequency and time-decay effect of the event. Evaluation on a real dataset shows the proposed conversion prediction model achieves 91% accuracy.
In recent years, many recommender systems using network embedding (NE) such as graph neural networks (GNNs) have been extensively studied in the sense of improving recommendation accuracy. However, such attempts have focused mostly on utilizing only the information of positive user-item interactions with high ratings. Thus, there is a challenge on how to make use of low rating scores for representing users preferences since low ratings can be still informative in designing NE-based recommender systems. In this study, we present SiReN, a new sign-aware recommender system based on GNN models. Specifically, SiReN has three key components: 1) constructing a signed bipartite graph for more precisely representing users preferences, which is split into two edge-disjoint graphs with positive and negative edges each, 2) generating two embeddings for the partitioned graphs with positive and negative edges via a GNN model and a multi-layer perceptron (MLP), respectively, and then using an attention model to obtain the final embeddings, and 3) establishing a sign-aware Bayesian personalized ranking (BPR) loss function in the process of optimization. Through comprehensive experiments, we empirically demonstrate that SiReN consistently outperforms state-of-the-art NE-aided recommendation methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا