ﻻ يوجد ملخص باللغة العربية
We are concerned here with unrestricted maximum likelihood estimation in a sparse $p_0$ model with covariates for directed networks. The model has a density parameter $ u$, a $2n$-dimensional node parameter $bs{eta}$ and a fixed dimensional regression coefficient $bs{gamma}$ of covariates. Previous studies focus on the restricted likelihood inference. When the number of nodes $n$ goes to infinity, we derive the $ell_infty$-error between the maximum likelihood estimator (MLE) $(widehat{bs{eta}}, widehat{bs{gamma}})$ and its true value $(bs{eta}, bs{gamma})$. They are $O_p( (log n/n)^{1/2} )$ for $widehat{bs{eta}}$ and $O_p( log n/n)$ for $widehat{bs{gamma}}$, up to an additional factor. This explains the asymptotic bias phenomenon in the asymptotic normality of $widehat{bs{gamma}}$ in cite{Yan-Jiang-Fienberg-Leng2018}. Further, we derive the asymptotic normality of the MLE. Numerical studies and a data analysis demonstrate our theoretical findings.
The edges in networks are not only binary, either present or absent, but also take weighted values in many scenarios (e.g., the number of emails between two users). The covariate-$p_0$ model has been proposed to model binary directed networks with th
The $p_0$ model is an exponential random graph model for directed networks with the bi-degree sequence as the exclusively sufficient statistic. It captures the network feature of degree heterogeneity. The consistency and asymptotic normality of a dif
Holland and Leinhardt (1981) proposed a directed random graph model, the p1 model, to describe dyadic interactions in a social network. In previous work (Petrovic et al., 2010), we studied the algebraic properties of the p1 model and showed that it i
In this article we study the existence and strong consistency of GEE estimators, when the generalized estimating functions are martingales with random coefficients. Furthermore, we characterize estimating functions which are asymptotically optimal.
Estimating the matrix of connections probabilities is one of the key questions when studying sparse networks. In this work, we consider networks generated under the sparse graphon model and the in-homogeneous random graph model with missing observati