ﻻ يوجد ملخص باللغة العربية
PYROBOCOP is a lightweight Python-based package for control and optimization of robotic systems described by nonlinear Differential Algebraic Equations (DAEs). In particular, the package can handle systems with contacts that are described by complementarity constraints and provides a general framework for specifying obstacle avoidance constraints. The package performs direct transcription of the DAEs into a set of nonlinear equations by performing orthogonal collocation on finite elements. The resulting optimization problem belongs to the class of Mathematical Programs with Complementarity Constraints (MPCCs). MPCCs fail to satisfy commonly assumed constraint qualifications and require special handling of the complementarity constraints in order for NonLinear Program (NLP) solvers to solve them effectively. PYROBOCOP provides automatic reformulation of the complementarity constraints that enables NLP solvers to perform optimization of robotic systems. The package is interfaced with ADOLC for obtaining sparse derivatives by automatic differentiation and IPOPT for performing optimization. We demonstrate the effectiveness of our approach in terms of speed and flexibility. We provide several numerical examples for several robotic systems with collision avoidance as well as contact constraints represented using complementarity constraints. We provide comparisons with other open source optimization packages like CasADi and Pyomo .
This paper proposes a novel approach to performing in-grasp manipulation: the problem of moving an object with reference to the palm from an initial pose to a goal pose without breaking or making contacts. Our method to perform in-grasp manipulation
Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks, and determining collision-free trajectories for multiple UAVs while satisfying requirements of connectivity with ground base stations (GBSs) is a challenging ta
Despite the success of reinforcement learning methods, they have yet to have their breakthrough moment when applied to a broad range of robotic manipulation tasks. This is partly due to the fact that reinforcement learning algorithms are notoriously
Formation and collision avoidance abilities are essential for multi-agent systems. Conventional methods usually require a central controller and global information to achieve collaboration, which is impractical in an unknown environment. In this pape
We design and experimentally evaluate a hybrid safe-by-construction collision avoidance controller for autonomous vehicles. The controller combines into a single architecture the respective advantages of an adaptive controller and a discrete safe con