ترغب بنشر مسار تعليمي؟ اضغط هنا

Go with the Flows: Mixtures of Normalizing Flows for Point Cloud Generation and Reconstruction

423   0   0.0 ( 0 )
 نشر من قبل Janis Postels
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently normalizing flows (NFs) have demonstrated state-of-the-art performance on modeling 3D point clouds while allowing sampling with arbitrary resolution at inference time. However, these flow-based models still require long training times and large models for representing complicated geometries. This work enhances their representational power by applying mixtures of NFs to point clouds. We show that in this more general framework each component learns to specialize in a particular subregion of an object in a completely unsupervised fashion. By instantiating each mixture component with a comparatively small NF we generate point clouds with improved details compared to single-flow-based models while using fewer parameters and considerably reducing the inference runtime. We further demonstrate that by adding data augmentation, individual mixture components can learn to specialize in a semantically meaningful manner. We evaluate mixtures of NFs on generation, autoencoding and single-view reconstruction based on the ShapeNet dataset.

قيم البحث

اقرأ أيضاً

83 - Aihua Mao , Zihui Du , Junhui Hou 2021
Point cloud upsampling aims to generate dense point clouds from given sparse ones, which is a challenging task due to the irregular and unordered nature of point sets. To address this issue, we present a novel deep learning-based model, called PU-Flo w,which incorporates normalizing flows and feature interpolation techniques to produce dense points uniformly distributed on the underlying surface. Specifically, we formulate the upsampling process as point interpolation in a latent space, where the interpolation weights are adaptively learned from local geometric context, and exploit the invertible characteristics of normalizing flows to transform points between Euclidean and latent spaces. We evaluate PU-Flow on a wide range of 3D models with sharp features and high-frequency details. Qualitative and quantitative results show that our method outperforms state-of-the-art deep learning-based approaches in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency.
We present a novel integrator based on normalizing flows which can be used to improve the unweighting efficiency of Monte-Carlo event generators for collider physics simulations. In contrast to machine learning approaches based on surrogate models, o ur method generates the correct result even if the underlying neural networks are not optimally trained. We exemplify the new strategy using the example of Drell-Yan type processes at the LHC, both at leading and partially at next-to-leading order QCD.
Monocular 3D human pose and shape estimation is challenging due to the many degrees of freedom of the human body and thedifficulty to acquire training data for large-scale supervised learning in complex visual scenes. In this paper we present practic al semi-supervised and self-supervised models that support training and good generalization in real-world images and video. Our formulation is based on kinematic latent normalizing flow representations and dynamics, as well as differentiable, semantic body part alignment loss functions that support self-supervised learning. In extensive experiments using 3D motion capture datasets like CMU, Human3.6M, 3DPW, or AMASS, as well as image repositories like COCO, we show that the proposed methods outperform the state of the art, supporting the practical construction of an accurate family of models based on large-scale training with diverse and incompletely labeled image and video data.
Deep learning based image compression has recently witnessed exciting progress and in some cases even managed to surpass transform coding based approaches that have been established and refined over many decades. However, state-of-the-art solutions f or deep image compression typically employ autoencoders which map the input to a lower dimensional latent space and thus irreversibly discard information already before quantization. Due to that, they inherently limit the range of quality levels that can be covered. In contrast, traditional approaches in image compression allow for a larger range of quality levels. Interestingly, they employ an invertible transformation before performing the quantization step which explicitly discards information. Inspired by this, we propose a deep image compression method that is able to go from low bit-rates to near lossless quality by leveraging normalizing flows to learn a bijective mapping from the image space to a latent representation. In addition to this, we demonstrate further advantages unique to our solution, such as the ability to maintain constant quality results through re-encoding, even when performed multiple times. To the best of our knowledge, this is the first work to explore the opportunities for leveraging normalizing flows for lossy image compression.
Recent work has shown that Neural Ordinary Differential Equations (ODEs) can serve as generative models of images using the perspective of Continuous Normalizing Flows (CNFs). Such models offer exact likelihood calculation, and invertible generation/ density estimation. In this work we introduce a Multi-Resolution variant of such models (MRCNF), by characterizing the conditional distribution over the additional information required to generate a fine image that is consistent with the coarse image. We introduce a transformation between resolutions that allows for no change in the log likelihood. We show that this approach yields comparable likelihood values for various image datasets, with improved performance at higher resolutions, with fewer parameters, using only 1 GPU. Further, we examine the out-of-distribution properties of (Multi-Resolution) Continuous Normalizing Flows, and find that they are similar to those of other likelihood-based generative models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا