ترغب بنشر مسار تعليمي؟ اضغط هنا

Achieving quantum precision limit in adaptive qubit state tomography

234   0   0.0 ( 0 )
 نشر من قبل Zhibo Hou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The precision limit in quantum state tomography is of great interest not only to practical applications but also to foundational studies. However, little is known about this subject in the multiparameter setting even theoretically due to the subtle information tradeoff among incompatible observables. In the case of a qubit, the theoretic precision limit was determined by Hayashi as well as Gill and Massar, but attaining the precision limit in experiments has remained a challenging task. Here we report the first experiment which achieves this precision limit in adaptive quantum state tomography on optical polarization qubits. The two-step adaptive strategy employed in our experiment is very easy to implement in practice. Yet it is surprisingly powerful in optimizing most figures of merit of practical interest. Our study may have significant implications for multiparameter quantum estimation problems, such as quantum metrology. Meanwhile, it may promote our understanding about the complementarity principle and uncertainty relations from the information theoretic perspective.



قيم البحث

اقرأ أيضاً

119 - Bo Qi , Zhibo Hou , Yuanlong Wang 2015
Adaptive techniques have important potential for wide applications in enhancing precision of quantum parameter estimation. We present a recursively adaptive quantum state tomography (RAQST) protocol for finite dimensional quantum systems and experime ntally implement the adaptive tomography protocol on two-qubit systems. In this RAQST protocol, an adaptive measurement strategy and a recursive linear regression estimation algorithm are performed. Numerical results show that our RAQST protocol can outperform the tomography protocols using mutually unbiased bases (MUB) and the two-stage MUB adaptive strategy even with the simplest product measurements. When nonlocal measurements are available, our RAQST can beat the Gill-Massar bound for a wide range of quantum states with a modest number of copies. We use only the simplest product measurements to implement two-qubit tomography experiments. In the experiments, we use error-compensation techniques to tackle systematic error due to misalignments and imperfection of wave plates, and achieve about 100-fold reduction of the systematic error. The experimental results demonstrate that the improvement of RAQST over nonadaptive tomography is significant for states with a high level of purity. Our results also show that this recursively adaptive tomography method is particularly effective for the reconstruction of maximally entangled states, which are important resources in quantum information.
The ultimate precision limit in estimating the Larmor frequency of $N$ unentangled rotating spins is well established, and is highly important for magnetometers, gyroscopes and many other sensors. However this limit assumes perfect, single addressing , measurements of the spins. This requirement is not practical in NMR spectroscopy, as well as other physical systems, where a weakly interacting external probe is used as a measurement device. Here we show that in the framework of quantum nano-NMR spectroscopy, in which these limitations are inherent, the ultimate precision limit is still achievable using control and a finely tuned measurement.
We report an experimental realization of adaptive Bayesian quantum state tomography for two-qubit states. Our implementation is based on the adaptive experimental design strategy proposed in [F.Huszar and N.M.T.Houlsby, Phys.Rev.A 85, 052120 (2012)] and provides an optimal measurement approach in terms of the information gain. We address the practical questions, which one faces in any experimental application: the influence of technical noise, and behavior of the tomographic algorithm for an easy to implement class of factorized measurements. In an experiment with polarization states of entangled photon pairs we observe a lower instrumental noise floor and superior reconstruction accuracy for nearly-pure states of the adaptive protocol compared to a non-adaptive. At the same time we show, that for the mixed states the restriction to factorized measurements results in no advantage for adaptive measurements, so general measurements have to be used.
Full quantum state tomography is used to characterize the state of an ensemble based qubit implemented through two hyperfine levels in Pr3+ ions, doped into a Y2SiO5 crystal. We experimentally verify that single-qubit rotation errors due to inhomogen eities of the ensemble can be suppressed using the Roos-Moelmer dark state scheme. Fidelities above >90%, presumably limited by excited state decoherence, were achieved. Although not explicitly taken care of in the Roos-Moelmer scheme, it appears that also decoherence due to inhomogeneous broadening on the hyperfine transition is largely suppressed.
The standard method of Quantum State Tomography (QST) relies on the measurement of a set of noncommuting observables, realized in a series of independent experiments. Ancilla Assisted QST (AAQST) proposed by Nieuwenhuizen and co-workers (Phys. Rev. L ett., 92, 120402 (2004)) greatly reduces the number of independent measurements by exploiting an ancilla register in a known initial state. In suitable conditions AAQST allows mapping out density matrix of an input register in a single experiment. Here we describe methods for explicit construction of AAQST experiments in multi-qubit registers. We also report nuclear magnetic resonance studies on AAQST of (i) a two- qubit input register using a one-qubit ancilla in an isotropic liquid-state system and (ii) a three-qubit input register using a two-qubit ancilla register in a partially oriented system. The experimental results confirm the effectiveness of AAQST in such many-qubit registers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا