ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine learning equipped web based disease prediction and recommender system

67   0   0.0 ( 0 )
 نشر من قبل Narinder Singh Punn
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Worldwide, several cases go undiagnosed due to poor healthcare support in remote areas. In this context, a centralized system is needed for effective monitoring and analysis of the medical records. A web-based patient diagnostic system is a central platform to store the medical history and predict the possible disease based on the current symptoms experienced by a patient to ensure faster and accurate diagnosis. Early disease prediction can help the users determine the severity of the disease and take quick action. The proposed web-based disease prediction system utilizes machine learning based classification techniques on a data set acquired from the National Centre of Disease Control (NCDC). $K$-nearest neighbor (K-NN), random forest and naive bayes classification approaches are utilized and an ensemble voting algorithm is also proposed where each classifier is assigned weights dynamically based on the prediction confidence. The proposed system is also equipped with a recommendation scheme to recommend the type of tests based on the existing symptoms of the patient, so that necessary precautions can be taken. A centralized database ensures that the medical data is preserved and there is transparency in the system. The tampering into the system is prevented by giving the no updation rights once the diagnosis is created.



قيم البحث

اقرأ أيضاً

89 - Anees Kazi 2018
Multi-modal data comprising imaging (MRI, fMRI, PET, etc.) and non-imaging (clinical test, demographics, etc.) data can be collected together and used for disease prediction. Such diverse data gives complementary information about the patients condit ion to make an informed diagnosis. A model capable of leveraging the individuality of each multi-modal data is required for better disease prediction. We propose a graph convolution based deep model which takes into account the distinctiveness of each element of the multi-modal data. We incorporate a novel self-attention layer, which weights every element of the demographic data by exploring its relation to the underlying disease. We demonstrate the superiority of our developed technique in terms of computational speed and performance when compared to state-of-the-art methods. Our method outperforms other methods with a significant margin.
Group recommender systems are widely used in current web applications. In this paper, we propose a novel group recommender system based on the deep reinforcement learning. We introduce the MovieLens data at first and generate one random group dataset , MovieLens-Rand, from it. This randomly generated dataset is described and analyzed. We also present experimental settings and two state-of-art baselines, AGREE and GroupIM. The framework of our novel model, the Deep Reinforcement learning based Group Recommender system (DRGR), is proposed. Actor-critic networks are implemented with the deep deterministic policy gradient algorithm. The DRGR model is applied on the MovieLens-Rand dataset with two baselines. Compared with baselines, we conclude that DRGR performs better than GroupIM due to long interaction histories but worse than AGREE because of the self-attention mechanism. We express advantages and shortcomings of DRGR and also give future improvement directions at the end.
Knee osteoarthritis (OA) is the most common musculoskeletal disease without a cure, and current treatment options are limited to symptomatic relief. Prediction of OA progression is a very challenging and timely issue, and it could, if resolved, accel erate the disease modifying drug development and ultimately help to prevent millions of total joint replacement surgeries performed annually. Here, we present a multi-modal machine learning-based OA progression prediction model that utilizes raw radiographic data, clinical examination results and previous medical history of the patient. We validated this approach on an independent test set of 3,918 knee images from 2,129 subjects. Our method yielded area under the ROC curve (AUC) of 0.79 (0.78-0.81) and Average Precision (AP) of 0.68 (0.66-0.70). In contrast, a reference approach, based on logistic regression, yielded AUC of 0.75 (0.74-0.77) and AP of 0.62 (0.60-0.64). The proposed method could significantly improve the subject selection process for OA drug-development trials and help the development of personalized therapeutic plans.
Multimodal neuroimage can provide complementary information about the dementia, but small size of complete multimodal data limits the ability in representation learning. Moreover, the data distribution inconsistency from different modalities may lead to ineffective fusion, which fails to sufficiently explore the intra-modal and inter-modal interactions and compromises the disease diagnosis performance. To solve these problems, we proposed a novel multimodal representation learning and adversarial hypergraph fusion (MRL-AHF) framework for Alzheimers disease diagnosis using complete trimodal images. First, adversarial strategy and pre-trained model are incorporated into the MRL to extract latent representations from multimodal data. Then two hypergraphs are constructed from the latent representations and the adversarial network based on graph convolution is employed to narrow the distribution difference of hyperedge features. Finally, the hyperedge-invariant features are fused for disease prediction by hyperedge convolution. Experiments on the public Alzheimers Disease Neuroimaging Initiative(ADNI) database demonstrate that our model achieves superior performance on Alzheimers disease detection compared with other related models and provides a possible way to understand the underlying mechanisms of disorders progression by analyzing the abnormal brain connections.
To predict a critical transition due to parameter drift without relying on model is an outstanding problem in nonlinear dynamics and applied fields. A closely related problem is to predict whether the system is already in or if the system will be in a transient state preceding its collapse. We develop a model free, machine learning based solution to both problems by exploiting reservoir computing to incorporate a parameter input channel. We demonstrate that, when the machine is trained in the normal functioning regime with a chaotic attractor (i.e., before the critical transition), the transition point can be predicted accurately. Remarkably, for a parameter drift through the critical point, the machine with the input parameter channel is able to predict not only that the system will be in a transient state, but also the average transient time before the final collapse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا