ترغب بنشر مسار تعليمي؟ اضغط هنا

BO-DBA: Query-Efficient Decision-Based Adversarial Attacks via Bayesian Optimization

184   0   0.0 ( 0 )
 نشر من قبل Zhuosheng Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Decision-based attacks (DBA), wherein attackers perturb inputs to spoof learning algorithms by observing solely the output labels, are a type of severe adversarial attacks against Deep Neural Networks (DNNs) requiring minimal knowledge of attackers. State-of-the-art DBA attacks relying on zeroth-order gradient estimation require an excessive number of queries. Recently, Bayesian optimization (BO) has shown promising in reducing the number of queries in score-based attacks (SBA), in which attackers need to observe real-valued probability scores as outputs. However, extending BO to the setting of DBA is nontrivial because in DBA only output labels instead of real-valued scores, as needed by BO, are available to attackers. In this paper, we close this gap by proposing an efficient DBA attack, namely BO-DBA. Different from existing approaches, BO-DBA generates adversarial examples by searching so-called emph{directions of perturbations}. It then formulates the problem as a BO problem that minimizes the real-valued distortion of perturbations. With the optimized perturbation generation process, BO-DBA converges much faster than the state-of-the-art DBA techniques. Experimental results on pre-trained ImageNet classifiers show that BO-DBA converges within 200 queries while the state-of-the-art DBA techniques need over 15,000 queries to achieve the same level of perturbation distortion. BO-DBA also shows similar attack success rates even as compared to BO-based SBA attacks but with less distortion.

قيم البحث

اقرأ أيضاً

186 - Qi-An Fu , Yinpeng Dong , Hang Su 2021
Deep learning models are vulnerable to adversarial examples, which can fool a target classifier by imposing imperceptible perturbations onto natural examples. In this work, we consider the practical and challenging decision-based black-box adversaria l setting, where the attacker can only acquire the final classification labels by querying the target model without access to the models details. Under this setting, existing works often rely on heuristics and exhibit unsatisfactory performance. To better understand the rationality of these heuristics and the limitations of existing methods, we propose to automatically discover decision-based adversarial attack algorithms. In our approach, we construct a search space using basic mathematical operations as building blocks and develop a random search algorithm to efficiently explore this space by incorporating several pruning techniques and intuitive priors inspired by program synthesis works. Although we use a small and fast model to efficiently evaluate attack algorithms during the search, extensive experiments demonstrate that the discovered algorithms are simple yet query-efficient when transferred to larger normal and defensive models on the CIFAR-10 and ImageNet datasets. They achieve comparable or better performance than the state-of-the-art decision-based attack methods consistently.
Face recognition has obtained remarkable progress in recent years due to the great improvement of deep convolutional neural networks (CNNs). However, deep CNNs are vulnerable to adversarial examples, which can cause fateful consequences in real-world face recognition applications with security-sensitive purposes. Adversarial attacks are widely studied as they can identify the vulnerability of the models before they are deployed. In this paper, we evaluate the robustness of state-of-the-art face recognition models in the decision-based black-box attack setting, where the attackers have no access to the model parameters and gradients, but can only acquire hard-label predictions by sending queries to the target model. This attack setting is more practical in real-world face recognition systems. To improve the efficiency of previous methods, we propose an evolutionary attack algorithm, which can model the local geometries of the search directions and reduce the dimension of the search space. Extensive experiments demonstrate the effectiveness of the proposed method that induces a minimum perturbation to an input face image with fewer queries. We also apply the proposed method to attack a real-world face recognition system successfully.
135 - Chen Ma , Shuyu Cheng , Li Chen 2020
We propose a simple and highly query-efficient black-box adversarial attack named SWITCH, which has a state-of-the-art performance in the score-based setting. SWITCH features a highly efficient and effective utilization of the gradient of a surrogate model $hat{mathbf{g}}$ w.r.t. the input image, i.e., the transferable gradient. In each iteration, SWITCH first tries to update the current sample along the direction of $hat{mathbf{g}}$, but considers switching to its opposite direction $-hat{mathbf{g}}$ if our algorithm detects that it does not increase the value of the attack objective function. We justify the choice of switching to the opposite direction by a local approximate linearity assumption. In SWITCH, only one or two queries are needed per iteration, but it is still effective due to the rich information provided by the transferable gradient, thereby resulting in unprecedented query efficiency. To improve the robustness of SWITCH, we further propose SWITCH$_text{RGF}$ in which the update follows the direction of a random gradient-free (RGF) estimate when neither $hat{mathbf{g}}$ nor its opposite direction can increase the objective, while maintaining the advantage of SWITCH in terms of query efficiency. Experimental results conducted on CIFAR-10, CIFAR-100 and TinyImageNet show that compared with other methods, SWITCH achieves a satisfactory attack success rate using much fewer queries, and SWITCH$_text{RGF}$ achieves the state-of-the-art attack success rate with fewer queries overall. Our approach can serve as a strong baseline for future black-box attacks because of its simplicity. The PyTorch source code is released on https://github.com/machanic/SWITCH.
The existence of adversarial examples underscores the importance of understanding the robustness of machine learning models. Bayesian neural networks (BNNs), due to their calibrated uncertainty, have been shown to posses favorable adversarial robustn ess properties. However, when approximate Bayesian inference methods are employed, the adversarial robustness of BNNs is still not well understood. In this work, we employ gradient-free optimization methods in order to find adversarial examples for BNNs. In particular, we consider genetic algorithms, surrogate models, as well as zeroth order optimization methods and adapt them to the goal of finding adversarial examples for BNNs. In an empirical evaluation on the MNIST and Fashion MNIST datasets, we show that for various approximate Bayesian inference methods the usage of gradient-free algorithms can greatly improve the rate of finding adversarial examples compared to state-of-the-art gradient-based methods.
Adversarial attacks expose important vulnerabilities of deep learning models, yet little attention has been paid to settings where data arrives as a stream. In this paper, we formalize the online adversarial attack problem, emphasizing two key elemen ts found in real-world use-cases: attackers must operate under partial knowledge of the target model, and the decisions made by the attacker are irrevocable since they operate on a transient data stream. We first rigorously analyze a deterministic variant of the online threat model by drawing parallels to the well-studied $k$-secretary problem in theoretical computer science and propose Virtual+, a simple yet practical online algorithm. Our main theoretical result show Virtual+ yields provably the best competitive ratio over all single-threshold algorithms for $k<5$ -- extending previous analysis of the $k$-secretary problem. We also introduce the textit{stochastic $k$-secretary} -- effectively reducing online blackbox transfer attacks to a $k$-secretary problem under noise -- and prove theoretical bounds on the performance of textit{any} online algorithms adapted to this setting. Finally, we complement our theoretical results by conducting experiments on both MNIST and CIFAR-10 with both vanilla and robust classifiers, revealing not only the necessity of online algorithms in achieving near-optimal performance but also the rich interplay of a given attack strategy towards online attack selection, enabling simple strategies like FGSM to outperform classically strong whitebox adversaries.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا