ﻻ يوجد ملخص باللغة العربية
We present and analyze an algorithm for optimizing smooth and convex or strongly convex objectives using minibatch stochastic gradient estimates. The algorithm is optimal with respect to its dependence on both the minibatch size and minimum expected loss simultaneously. This improves over the optimal method of Lan (2012), which is insensitive to the minimum expected loss; over the optimistic acceleration of Cotter et al. (2011), which has suboptimal dependence on the minibatch size; and over the algorithm of Liu and Belkin (2018), which is limited to least squares problems and is also similarly suboptimal with respect to the minibatch size. Applied to interpolation learning, the improvement over Cotter et al. and Liu and Belkin translates to a linear, rather than square-root, parallelization speedup.
Federated Learning (FL) refers to the paradigm where multiple worker nodes (WNs) build a joint model by using local data. Despite extensive research, for a generic non-convex FL problem, it is not clear, how to choose the WNs and the servers update d
Bilevel optimization has become a powerful framework in various machine learning applications including meta-learning, hyperparameter optimization, and network architecture search. There are generally two classes of bilevel optimization formulations
We propose a novel hybrid stochastic policy gradient estimator by combining an unbiased policy gradient estimator, the REINFORCE estimator, with another biased one, an adapted SARAH estimator for policy optimization. The hybrid policy gradient estima
Generalization performance of stochastic optimization stands a central place in learning theory. In this paper, we investigate the excess risk performance and towards improved learning rates for two popular approaches of stochastic optimization: empi
We derive an algorithm that achieves the optimal (within constants) pseudo-regret in both adversarial and stochastic multi-armed bandits without prior knowledge of the regime and time horizon. The algorithm is based on online mirror descent (OMD) wit