ﻻ يوجد ملخص باللغة العربية
We study a generating function flowing from the one enumerating a set of partitions to the one enumerating the corresponding set of noncrossing partitions; numerical simulations indicate that its limit in the Adjacency random matrix model on bipartite Erdos-Renyi graphs gives a good approximation of the spectral distribution for large average degrees. This model and a Wishart-type random matrix model are described using congruence classes on $k$-divisible partitions. We compute, in the $dto infty$ limit with $frac{Z_a}{d}$ fixed, the spectral distribution of an Adjacency and of a Laplacian random block matrix model, on bipartite Erdos-Renyi graphs and on bipartite biregular graphs with degrees $Z_1, Z_2$; the former is the approximation previously mentioned; the latter is a mean field approximation of the Hessian of a random bipartite biregular elastic network; it is characterized by an isostatic line and a transition line between the one- and the two-band regions.
We compute critical properties of a general class of quantum spin chains which are quadratic in the Fermi operators and can be solved exactly under certain symmetry constraints related to the classical compact groups $U(N)$, $O(N)$ and $Sp(2N)$. In p
We study matrix product unitary operators (MPUs) for fermionic one-dimensional (1D) chains. In stark contrast with the case of 1D qudit systems, we show that (i) fermionic MPUs do not necessarily feature a strict causal cone and (ii) not all fermioni
With a scalar potential and a bivector potential, the vector field associated with the drift of a diffusion is decomposed into a generalized gradient field, a field perpendicular to the gradient, and a divergence-free field. We give such decompositio
The various types of generalized Cattaneo, called also telegraphers equation, are studied. We find conditions under which solutions of the equations considered so far can be recognized as probability distributions, textit{i.e.} are normalizable and n
The random walk with hyperbolic probabilities that we are introducing is an example of stochastic diffusion in a one-dimensional heterogeneous media. Although driven by site-dependent one-step transition probabilities, the process retains some of the