ﻻ يوجد ملخص باللغة العربية
We compute critical properties of a general class of quantum spin chains which are quadratic in the Fermi operators and can be solved exactly under certain symmetry constraints related to the classical compact groups $U(N)$, $O(N)$ and $Sp(2N)$. In particular we calculate critical exponents $s$, $ u$ and $z$, corresponding to the energy gap, correlation length and dynamic exponent respectively. We also compute the ground state correlators $leftlangle sigma^{x}_{i} sigma^{x}_{i+n} rightrangle_{g}$, $leftlangle sigma^{y}_{i} sigma^{y}_{i+n} rightrangle_{g}$ and $leftlangle prod^{n}_{i=1} sigma^{z}_{i} rightrangle_{g}$, all of which display quasi-long-range order with a critical exponent dependent upon system parameters. Our approach establishes universality of the exponents for the class of systems in question.
We study a generating function flowing from the one enumerating a set of partitions to the one enumerating the corresponding set of noncrossing partitions; numerical simulations indicate that its limit in the Adjacency random matrix model on bipartit
The purpose of this review article is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review, combined with mo
We present the results of a percolation-like model that has been restricted compared to standard percolation models in the sense that we do not allow finite sized clusters to break up once they have formed. We calculate the critical exponents for thi
We study the thermodynamics and critical behavior of su($m|n$) supersymmetric spin chains of Haldane-Shastry type with a chemical potential term. We obtain a closed-form expression for the partition function and deduce a description of the spectrum i
This article begins with a brief review of random matrix theory, followed by a discussion of how the large-$N$ limit of random matrix models can be realized using operator algebras. I then explain the notion of Brown measure, which play the role of t