ﻻ يوجد ملخص باللغة العربية
Narrow-band imaging surveys allow the study of the spectral characteristics of galaxies without the need of performing their spectroscopic follow-up. In this work, we forward-model the Physics of the Accelerating Universe Survey (PAUS) narrow-band data. The aim is to improve the constraints on the spectral coefficients used to create the galaxy spectral energy distributions (SED) of the galaxy population model in Tortorelli et al. 2020. In that work, the model parameters were inferred from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) data using Approximate Bayesian Computation (ABC). This led to stringent constraints on the B-band galaxy luminosity function parameters, but left the spectral coefficients only broadly constrained. To address that, we perform an ABC inference using CFHTLS and PAUS data. This is the first time our approach combining forward-modelling and ABC is applied simultaneously to multiple datasets. We test the results of the ABC inference by comparing the narrow-band magnitudes of the observed and simulated galaxies using Principal Component Analysis, finding a very good agreement. Furthermore, we prove the scientific potential of the constrained galaxy population model to provide realistic stellar population properties by measuring them with the SED fitting code CIGALE. We use CFHTLS broad-band and PAUS narrow-band photometry for a flux-limited ($mathrm{i}<22.5$) sample of galaxies spanning the redshift range $mathrm{0<z<1.0}$. We find that properties like stellar masses, star-formation rates, mass-weighted stellar ages and metallicities are in agreement within errors between observations and simulations. Overall, this work shows the ability of our galaxy population model to correctly forward-model a complex dataset such as PAUS and the ability to reproduce the diversity of galaxy properties at the redshift range spanned by CFHTLS and PAUS.
Classification of stars and galaxies is a well-known astronomical problem that has been treated using different approaches, most of them relying on morphological information. In this paper, we tackle this issue using the low-resolution spectra from n
We present a mock catalogue for the Physics of the Accelerating Universe Survey (PAUS) and use it to quantify the competitiveness of the narrow band imaging for measuring spectral features and galaxy clustering. The mock agrees with observed number c
We present the first measurements of the projected clustering and intrinsic alignments (IA) of galaxies observed by the Physics of the Accelerating Universe Survey (PAUS). With photometry in 40 narrow optical passbands ($450rm{nm}-850rm{nm}$), the qu
We study the consistency of the physical properties of galaxies retrieved from SED-fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control s
With the dramatic rise in high-quality galaxy data expected from Euclid and Vera C. Rubin Observatory, there will be increasing demand for fast high-precision methods for measuring galaxy fluxes. These will be essential for inferring the redshifts of