ﻻ يوجد ملخص باللغة العربية
We study the consistency of the physical properties of galaxies retrieved from SED-fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding the stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations, and degeneracies affecting the retrieved parameters and explore the r^ole of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the SDSS, we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior PDFs, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy; albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.
Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity
The impending Javalambre Physics of the accelerating universe Astrophysical Survey (J-PAS) will be the first wide-field survey of $gtrsim$ 8500 deg$^2$ to reach the `stage IV category. Because of the redshift resolution afforded by 54 narrow-band fil
We present a mock catalogue for the Physics of the Accelerating Universe Survey (PAUS) and use it to quantify the competitiveness of the narrow band imaging for measuring spectral features and galaxy clustering. The mock agrees with observed number c
Narrow-band imaging surveys allow the study of the spectral characteristics of galaxies without the need of performing their spectroscopic follow-up. In this work, we forward-model the Physics of the Accelerating Universe Survey (PAUS) narrow-band da
J-PAS will soon start imaging 8000 deg2 of the northern sky with its unique set of 56 filters (R $sim$ 60). Before, we observed 1 deg2 on the AEGIS field with an interim camera with all the J-PAS filters. With this data (miniJPAS), we aim at proving