ترغب بنشر مسار تعليمي؟ اضغط هنا

Conversations Are Not Flat: Modeling the Dynamic Information Flow across Dialogue Utterances

67   0   0.0 ( 0 )
 نشر من قبل Zekang Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Nowadays, open-domain dialogue models can generate acceptable responses according to the historical context based on the large-scale pre-trained language models. However, they generally concatenate the dialogue history directly as the model input to predict the response, which we named as the flat pattern and ignores the dynamic information flow across dialogue utterances. In this work, we propose the DialoFlow model, in which we introduce a dynamic flow mechanism to model the context flow, and design three training objectives to capture the information dynamics across dialogue utterances by addressing the semantic influence brought about by each utterance in large-scale pre-training. Experiments on the multi-reference Reddit Dataset and DailyDialog Dataset demonstrate that our DialoFlow significantly outperforms the DialoGPT on the dialogue generation task. Besides, we propose the Flow score, an effective automatic metric for evaluating interactive human-bot conversation quality based on the pre-trained DialoFlow, which presents high chatbot-level correlation ($r=0.9$) with human ratings among 11 chatbots. Code and pre-trained models will be public. footnote{url{https://github.com/ictnlp/DialoFlow}}



قيم البحث

اقرأ أيضاً

Dialogue summarization aims to generate a summary that indicates the key points of a given dialogue. In this work, we propose an end-to-end neural model for dialogue summarization with two novel modules, namely, the emph{supporting utterance flow mod eling module} and the emph{fact regularization module}. The supporting utterance flow modeling helps to generate a coherent summary by smoothly shifting the focus from the former utterances to the later ones. The fact regularization encourages the generated summary to be factually consistent with the ground-truth summary during model training, which helps to improve the factual correctness of the generated summary in inference time. Furthermore, we also introduce a new benchmark dataset for dialogue summarization. Extensive experiments on both existing and newly-introduced datasets demonstrate the effectiveness of our model.
Most recently proposed approaches in dialogue state tracking (DST) leverage the context and the last dialogue states to track current dialogue states, which are often slot-value pairs. Although the context contains the complete dialogue information, the information is usually indirect and even requires reasoning to obtain. The information in the lastly predicted dialogue states is direct, but when there is a prediction error, the dialogue information from this source will be incomplete or erroneous. In this paper, we propose the Dialogue State Tracking with Multi-Level Fusion of Predicted Dialogue States and Conversations network (FPDSC). This model extracts information of each dialogue turn by modeling interactions among each turn utterance, the corresponding last dialogue states, and dialogue slots. Then the representation of each dialogue turn is aggregated by a hierarchical structure to form the passage information, which is utilized in the current turn of DST. Experimental results validate the effectiveness of the fusion network with 55.03% and 59.07% joint accuracy on MultiWOZ 2.0 and MultiWOZ 2.1 datasets, which reaches the state-of-the-art performance. Furthermore, we conduct the deleted-value and related-slot experiments on MultiWOZ 2.1 to evaluate our model.
Identity fraud detection is of great importance in many real-world scenarios such as the financial industry. However, few studies addressed this problem before. In this paper, we focus on identity fraud detection in loan applications and propose to s olve this problem with a novel interactive dialogue system which consists of two modules. One is the knowledge graph (KG) constructor organizing the personal information for each loan applicant. The other is structured dialogue management that can dynamically generate a series of questions based on the personal KG to ask the applicants and determine their identity states. We also present a heuristic user simulator based on problem analysis to evaluate our method. Experiments have shown that the trainable dialogue system can effectively detect fraudsters, and achieve higher recognition accuracy compared with rule-based systems. Furthermore, our learned dialogue strategies are interpretable and flexible, which can help promote real-world applications.
Data-driven, knowledge-grounded neural conversation models are capable of generating more informative responses. However, these models have not yet demonstrated that they can zero-shot adapt to updated, unseen knowledge graphs. This paper proposes a new task about how to apply dynamic knowledge graphs in neural conversation model and presents a novel TV series conversation corpus (DyKgChat) for the task. Our new task and corpus aids in understanding the influence of dynamic knowledge graphs on responses generation. Also, we propose a preliminary model that selects an output from two networks at each time step: a sequence-to-sequence model (Seq2Seq) and a multi-hop reasoning model, in order to support dynamic knowledge graphs. To benchmark this new task and evaluate the capability of adaptation, we introduce several evaluation metrics and the experiments show that our proposed approach outperforms previous knowledge-grounded conversation models. The proposed corpus and model can motivate the future research directions.
91 - Bin Li , Bin Sun 2021
Generating personalized responses is one of the major challenges in natural human-robot interaction. Current researches in this field mainly focus on generating responses consistent with the robots pre-assigned persona, while ignoring the users perso na. Such responses may be inappropriate or even offensive, which may lead to the bad user experience. Therefore, we propose a bilateral personalized dialogue generation (BPDG) method with dynamic persona-aware fusion via multi-task transfer learning to generate responses consistent with both personas. The proposed method aims to accomplish three learning tasks: 1) an encoder is trained with dialogue utterances added with corresponded personalized attributes and relative position (language model task), 2) a dynamic persona-aware fusion module predicts the persona presence to adaptively fuse the contextual and bilateral personas encodings (persona prediction task) and 3) a decoder generates natural, fluent and personalized responses (dialogue generation task). To make the generated responses more personalized and bilateral persona-consistent, the Conditional Mutual Information Maximum (CMIM) criterion is adopted to select the final response from the generated candidates. The experimental results show that the proposed method outperforms several state-of-the-art methods in terms of both automatic and manual evaluations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا