ﻻ يوجد ملخص باللغة العربية
When fitting N-body models to astronomical data - including transit times, radial velocity, and astrometric positions at observed times - the derivatives of the model outputs with respect to the initial conditions can help with model optimization and posterior sampling. Here we describe a general-purpose symplectic integrator for arbitrary orbital architectures, including those with close encounters, which we have recast to maintain numerical stability and precision for small step sizes. We compute the derivatives of the N-body coordinates and velocities as a function of time with respect to the initial conditions and masses by propagating the Jacobian along with the N-body integration. For the first time we obtain the derivatives of the transit times with respect to the initial conditions and masses using the chain rule, which is quicker and more accurate than using finite differences or automatic differentiation. We implement this algorithm in an open source package, NbodyGradient.jl, written in the Julia language, which has been used in the optimization and error analysis of transit-timing variations in the TRAPPIST-1 system. We present tests of the accuracy and precision of the code, and show that it compares favorably in speed to other integrators which are written in C.
Context: Transit or eclipse timing variations have proven to be a valuable tool in exoplanet research. However, no simple way to estimate the potential precision of such timing measures has been presented yet, nor are guidelines available regarding t
Stellar photometric variability and instrumental effects, like cosmic ray hits, data discontinuities, data leaks, instrument aging etc. cause difficulties in the characterization of exoplanets and have an impact on the accuracy and precision of the m
We present a novel, iterative method using an empirical Bayesian approach for modeling the limb darkened WASP-121b transit from the TESS light curve. Our method is motivated by the need to improve $R_{p}/R_{ast}$ estimates for exoplanet atmosphere mo
We present an auto-differentiable spectral modeling of exoplanets and brown dwarfs. This model enables a fully Bayesian inference of the high-dispersion data to fit the ab initio line-by-line spectral computation to the observed spectrum by combining
We introduce here our new approach to modeling particle cloud evolution off surface of small bodies (asteroids and comets), following the evolution of ejected particles requires dealing with various time and spatial scales, in an efficient, accurate