ﻻ يوجد ملخص باللغة العربية
We present an auto-differentiable spectral modeling of exoplanets and brown dwarfs. This model enables a fully Bayesian inference of the high-dispersion data to fit the ab initio line-by-line spectral computation to the observed spectrum by combining it with the Hamiltonian Monte Carlo in recent probabilistic programming languages. An open source code, exojax, developed in this study, was written in Python using the GPU/TPU compatible package for automatic differentiation and accelerated linear algebra, JAX (Bradbury et al. 2018). We validated the model by comparing it with existing opacity calculators and a radiative transfer code and found reasonable agreements of the output. As a demonstration, we analyzed the high-dispersion spectrum of a nearby brown dwarf, Luhman 16 A and found that a model including water, carbon monoxide, and $mathrm{H_2/He}$ collision induced absorption was well fitted to the observed spectrum ($R=10^5$ and $2.28-2.30 mumathrm{m}$). As a result, we found that $T_0 = 1295 pm 14 mathrm{K}$ at 1 bar and $mathrm{C/O} = 0.62 pm 0.01$, which is slightly higher than the solar value. This work demonstrates the potential of full Bayesian analysis of brown dwarfs and exoplanets as observed by high-dispersion spectrographs and also directly-imaged exoplanets as observed by high-dispersion coronagraphy.
We explore the prospects for the detection of giant circumbinary exoplanets and brown dwarfs (BDs) orbiting Galactic double white dwarfs binaries (DWDs) with the Laser Interferometer Space Antenna (LISA). By assuming an occurrence rate of 50%, motiva
The nearby ultra-compact multiplanetary system YZ Ceti consists of at least three planets. The orbital period of each planet is the subject of discussion in the literature due to strong aliasing in the radial velocity data. The stellar activity of th
Recently, Tamanini & Danielski (2019) discussed the possibility to detect circumbinary exoplanets (CBPs) orbiting double white dwarfs (DWDs) with the Laser Interferometer Space Antenna (LISA). Extending their methods and criteria, we discuss the pros
High contrast direct imaging of exoplanets can provide many important observables, including measurements of the orbit, spectra that probe the lower layers of the atmosphere, and phase variations of the planet, but cannot directly measure planet radi
Starting in 2008, NASA has provided the exoplanet community an observational program aimed at obtaining the highest resolution imaging available as part of its mission to validate and characterize exoplanets, as well as their stellar environments, in