ترغب بنشر مسار تعليمي؟ اضغط هنا

Auto-Differentiable Spectrum Model for High-Dispersion Characterization of Exoplanets and Brown Dwarfs

449   0   0.0 ( 0 )
 نشر من قبل Hajime Kawahara
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an auto-differentiable spectral modeling of exoplanets and brown dwarfs. This model enables a fully Bayesian inference of the high-dispersion data to fit the ab initio line-by-line spectral computation to the observed spectrum by combining it with the Hamiltonian Monte Carlo in recent probabilistic programming languages. An open source code, exojax, developed in this study, was written in Python using the GPU/TPU compatible package for automatic differentiation and accelerated linear algebra, JAX (Bradbury et al. 2018). We validated the model by comparing it with existing opacity calculators and a radiative transfer code and found reasonable agreements of the output. As a demonstration, we analyzed the high-dispersion spectrum of a nearby brown dwarf, Luhman 16 A and found that a model including water, carbon monoxide, and $mathrm{H_2/He}$ collision induced absorption was well fitted to the observed spectrum ($R=10^5$ and $2.28-2.30 mumathrm{m}$). As a result, we found that $T_0 = 1295 pm 14 mathrm{K}$ at 1 bar and $mathrm{C/O} = 0.62 pm 0.01$, which is slightly higher than the solar value. This work demonstrates the potential of full Bayesian analysis of brown dwarfs and exoplanets as observed by high-dispersion spectrographs and also directly-imaged exoplanets as observed by high-dispersion coronagraphy.

قيم البحث

اقرأ أيضاً

We explore the prospects for the detection of giant circumbinary exoplanets and brown dwarfs (BDs) orbiting Galactic double white dwarfs binaries (DWDs) with the Laser Interferometer Space Antenna (LISA). By assuming an occurrence rate of 50%, motiva ted by white dwarf pollution observations, we built a Galactic synthetic population of P-type giant exoplanets and BDs orbiting DWDs. We carried this out by injecting different sub-stellar populations, with various mass and orbital separation characteristics, into the DWD population used in the LISA mission proposal. We then performed a Fisher matrix analysis to measure how many of these three-body systems show a periodic Doppler-shifted gravitational wave perturbation detectable by LISA. We report the number of circumbinary planets (CBPs) and (BDs) that can be detected by LISA for various combinations of mass and semi-major axis distributions. We identify pessimistic and optimistic scenarios corresponding, respectively, to 3 and 83 (14 and 2218) detections of CBPs (BDs), observed during the length of the nominal LISA mission. These detections are distributed all over the Galaxy following the underlying DWD distribution, and they are biased towards DWDs with higher LISA signal-to-noise ratio and shorter orbital period. Finally, we show that if LISA were to be extended for four more years, the number of systems detected will be more than doubled in both the optimistic and pessimistic scenarios. Our results present promising prospects for the detection of post-main sequence exoplanets and BDs, showing that gravitational waves can prove the existence of these populations over the totality of the Milky Way. Detections by LISA will deepen our knowledge on the life of exoplanets subsequent to the most extreme evolution phases of their hosts, clarifying whether new phases of planetary formation take place later in the life of the stars.
252 - S.Stock , J.Kemmer , S.Reffert 2020
The nearby ultra-compact multiplanetary system YZ Ceti consists of at least three planets. The orbital period of each planet is the subject of discussion in the literature due to strong aliasing in the radial velocity data. The stellar activity of th is M dwarf also hampers significantly the derivation of the planetary parameters. With an additional 229 radial velocity measurements obtained since the discovery publication, we reanalyze the YZ Ceti system and resolve the alias issues. We use model comparison in the framework of Bayesian statistics and periodogram simulations based on a method by Dawson and Fabrycky to resolve the aliases. We discuss additional signals in the RV data, and derive the planetary parameters by simultaneously modeling the stellar activity with a Gaussian process regression model. To constrain the planetary parameters further we apply a stability analysis on our ensemble of Keplerian fits. We resolve the aliases: the three planets orbit the star with periods of $2.02$ d, $3.06$ d, and $4.66$ d. We also investigate an effect of the stellar rotational signal on the derivation of the planetary parameters, in particular the eccentricity of the innermost planet. Using photometry we determine the stellar rotational period to be close to $68$ d. From the absence of a transit event with TESS, we derive an upper limit of the inclination of $i_mathrm{max} = 87.43$ deg. YZ Ceti is a prime example of a system where strong aliasing hindered the determination of the orbital periods of exoplanets. Additionally, stellar activity influences the derivation of planetary parameters and modeling them correctly is important for the reliable estimation of the orbital parameters in this specific compact system. Stability considerations then allow additional constraints to be placed on the planetary parameters.
Recently, Tamanini & Danielski (2019) discussed the possibility to detect circumbinary exoplanets (CBPs) orbiting double white dwarfs (DWDs) with the Laser Interferometer Space Antenna (LISA). Extending their methods and criteria, we discuss the pros pects for detecting exoplanets around DWDs not only by LISA, but also by Taiji, a Chinese space-borne gravitational-wave (GW) mission which has a slightly better sensitivity at low frequencies. We first explore how different binary masses and mass ratios affect the abilities of LISA and Taiji to detect CBPs. Second, for certain known detached DWDs with high signal-to-noise ratios, we quantify the possibility of CBP detections around them. Third, based on the DWD population obtained from the Mock LISA Data Challenge, we present basic assessments of the CBP detections in our Galaxy during a 4-year mission time for LISA and Taiji. We discuss the constraints on the detectable zone of each system, as well as the distributions of the inner/outer edge of the detectable zone. Based on the DWD population, we further inject two different planet distributions with an occurrence rate of $50%$ and constrain the total detection rates. We finally briefly discuss the prospects for detecting habitable CBPs around DWDs with a simplified model. These results can provide helpful inputs for upcoming exoplanetary projects and help analyze planetary systems after the common envelope phase.
High contrast direct imaging of exoplanets can provide many important observables, including measurements of the orbit, spectra that probe the lower layers of the atmosphere, and phase variations of the planet, but cannot directly measure planet radi us or mass. Our future understanding of directly imaged exoplanets will therefore rely on extrapolated models of planetary atmospheres and bulk composition, which need robust calibration. We estimate the population of extrasolar planets that could serve as calibrators for these models. Critically, this population of standard planets must be accessible to both direct imaging and the transit method, allowing for radius measurement. We show that the search volume of a direct imaging mission eventually overcomes the transit probability falloff with semi-major axis, so that as long as cold planets are not exceedingly rare, the population of transiting planets and directly imageable planets overlaps. Using current extrapolations of Kepler occurrence rates, we estimate that ~8 standard planets could be characterized shortward of 800 nm with an ambitious future direct imaging mission like LUVOIR-A and several dozen could be detected at V band. We show the design space that would expand the sample size and discuss the extent to which ground- and space-based surveys could detect this small but crucial population of planets.
Starting in 2008, NASA has provided the exoplanet community an observational program aimed at obtaining the highest resolution imaging available as part of its mission to validate and characterize exoplanets, as well as their stellar environments, in search of life in the universe. Our current program uses speckle interferometry in the optical (320-1000 nm) with new instruments on the 3.5-m WIYN and both 8-m Gemini telescopes. Starting with Kepler and K2 follow-up, we now support TESS and other space- and ground-based exoplanet related discovery and characterization projects. The importance of high-resolution imaging for exoplanet research comes via identification of nearby stellar companions that can dilute the transit signal and confound derived exoplanet and stellar parameters. Our observations therefore provide crucial information allowing accurate planet and stellar properties to be determined. Our community program obtains high-resolution imagery, reduces the data, and provides all final data products, without any exclusive use period, to the community via the Exoplanet Follow-Up Observation Program (ExoFOP) website maintained by the NASA Exoplanet Science Institute. This paper describes the need for high-resolution imaging and gives details of the speckle imaging program, highlighting some of the major scientific discoveries made along the way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا