ترغب بنشر مسار تعليمي؟ اضغط هنا

Natural Inflation After Planck 2018

156   0   0.0 ( 0 )
 نشر من قبل William H. Kinney
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate high-precision constraints on Natural Inflation relative to current observational constraints from Planck 2018 + BICEP/Keck(BK15) Polarization + BAO on $r$ and $n_S$, including post-inflationary history of the universe. We find that, for conventional post-inflationary dynamics, Natural Inflation with a cosine potential is disfavored at greater than 95% confidence out by current data. If we assume protracted reheating characterized by $overline{w}>1/3,$ Natural Inflation can be brought into agreement with current observational constraints. However, bringing unmodified Natural Inflation into the 68% confidence region requires values of $T_{mathrm{re}}$ below the scale of electroweak symmetry breaking. The addition of a SHOES prior on the Hubble Constant $H_0$ only worsens the fit.



قيم البحث

اقرأ أيضاً

313 - Nan Zhang , Ya-Bo Wu , Jun-Wang Lu 2018
Based on the dynamics of single scalar field slow-roll inflation and the theory of reheating, we investigate the generalized natural inflationary (GNI) model. Concretely, we give constraints on the scalar spectral index $n_{s}$ and tensor-to scalar r atio $r$ for $Lambda$CDM $+r$ model according to the latest data from Plack 2018 TT,TE,EE+lowE+lensing (P18) and BICEP2/Keck 2015 season (BK15), i.e., $n_{s}=0.9659pm0.0044$ at $68%$ confidence level (CL) and $r<0.0623$ at $95%$CL. We find that the GNI model is favored by P18 plus BK15 in the ranges of $log_{10}(f/M_{p})=0.62^{+0.17}_{-0.18}$ and $m=0.35^{+0.13}_{-0.23}$ at $68%$CL. In addition, the corresponding predictions of the general and two-phase reheating are respectively discussed. It follows that the parameter $m$ has the significant effect on the model behaviors.
We consider a model of the early universe which consists of two scalar fields: the inflaton, and a second field which drives the stabilisation of the Planck mass (or gravitational constant). We show that the non-minimal coupling of this second field to the Ricci scalar sources a non-adiabatic pressure perturbation. By performing a fully numerical calculation we find, in turn, that this boosts the amplitude of the primordial power spectrum after inflation.
We report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements. The results are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvemen ts in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be $n_mathrm{s}=0.9649pm 0.0042$ at 68% CL and show no evidence for a scale dependence of $n_mathrm{s}.$ Spatial flatness is confirmed at a precision of 0.4% at 95% CL with the combination with BAO data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, $r_{0.002}<0.10$, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain $r_{0.002}<0.056$. In the framework of single-field inflationary models with Einstein gravity, these results imply that: (a) slow-roll models with a concave potential, $V (phi) < 0,$ are increasingly favoured by the data; and (b) two different methods for reconstructing the inflaton potential find no evidence for dynamics beyond slow roll. Non-parametric reconstructions of the primordial power spectrum consistently confirm a pure power law. A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectrum, a result further strengthened for certain oscillatory models by a new combined analysis that includes Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadrupolar modulation of the primordial fluctuations. However, the polarization data do not confirm physical models for a scale-dependent dipolar modulation.
Sterile neutrinos can affect the evolution of the universe, and thus using the cosmological observations can search for sterile neutrinos. In this work, we use the cosmic microwave background (CMB) anisotropy data from the Planck 2018 release, combin ed with the latest baryon acoustic oscillation (BAO), type Ia supernova (SN), and Hubble constant ($H_0$) data, to constrain the cosmological models with considering sterile neutrinos. In order to test the influences of the properties of dark energy on the constraint results of searching for sterile neutrinos, in addition to the $Lambda$ cold dark matter ($Lambda$CDM) model, we also consider the $w$CDM model and the holographic dark energy (HDE) model. We find that sterile neutrinos cannot be detected when the $H_0$ local measurement is not included in the data combination. When the $H_0$ measurement is included in the joint constraints, it is found that $Delta N_{rm eff}>0$ is detected at about 2.7$sigma$ level for the $Lambda$CDM model and at about 1--1.7$sigma$ level for the $w$CDM model. However, $m_{ u,{rm{sterile}}}^{rm{eff}}$ still cannot be well constrained and only upper limits can be given. In addition, we find that the HDE model is definitely ruled out by the current data. We also discuss the issue of the Hubble tension, and we conclude that involving sterile neutrinos in the cosmological models cannot truly resolve the Hubble tension.
We investigate warm inflationary scenario in which the accelerated expansion of the early Universe is driven by chameleon-like scalar fields. Due to the non-minimal coupling between the scalar field and the matter sector, the energy-momentum tensor o f each fluid component is not conserved anymore, and the generalized balance equation is obtained. The new source term in the energy equation can be used to model warm inflation. On the other hand, if the coupling function varies slowly, the model reduces to the standard model used for the description of cold inflation. To test the validity of the warm chameleon inflation model, the results for warm inflationary scenarios are compared with the observational Planck2018 Cosmic Microwave Background data. In this regard, the perturbation parameters such as the amplitude of scalar perturbations, the scalar spectral index and the tensor-to-scalar ratio are derived at the horizon crossing in two approximations, corresponding to the weak and strong dissipative regimes. As a general result it turns out that the theoretical predictions of the chameleon warm inflationary scenario are consistent with the Planck 2018 observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا