ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining chameleon field driven warm inflation with Planck 2018 data

61   0   0.0 ( 0 )
 نشر من قبل Haidar Sheikhahmadi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate warm inflationary scenario in which the accelerated expansion of the early Universe is driven by chameleon-like scalar fields. Due to the non-minimal coupling between the scalar field and the matter sector, the energy-momentum tensor of each fluid component is not conserved anymore, and the generalized balance equation is obtained. The new source term in the energy equation can be used to model warm inflation. On the other hand, if the coupling function varies slowly, the model reduces to the standard model used for the description of cold inflation. To test the validity of the warm chameleon inflation model, the results for warm inflationary scenarios are compared with the observational Planck2018 Cosmic Microwave Background data. In this regard, the perturbation parameters such as the amplitude of scalar perturbations, the scalar spectral index and the tensor-to-scalar ratio are derived at the horizon crossing in two approximations, corresponding to the weak and strong dissipative regimes. As a general result it turns out that the theoretical predictions of the chameleon warm inflationary scenario are consistent with the Planck 2018 observations.



قيم البحث

اقرأ أيضاً

The constraints on a general form of the power-law potential and the dissipation coefficient in the framework of warm single field inflation imposed by Planck data will be investigated. {By Considering a quasi-static Universe, besides a slow-roll con dition, the suitable regions in which a pair of theoretical free parameters are in good agreement with Planck results will be estimated}. In this method instead of a set of free parameters, we can visualize a region of free parameters that can satisfy the precision limits on theoretical results. On the other side, when we consider the preformed quantity for the amplitude of scalar perturbations, the conflict between obtained results for free parameters in different steps dramatically will be decreased. {As have done in prominent} literature, based on the friction of the environment, we can divide the primordial Universe to the two different epochs namely weak and strong dissipative regimes. For the aforementioned eras, the free parameters of the model will be constrained and the best regions will be obtained. To do so, the main inflationary observables such as tensor-to-scalar ratio, power-spectra of density perturbations and gravitational waves, scalar and tensor spectral indices, running spectral index and the number of e-folds in both weak and strong regimes will be obtained. Ultimately, it can be visualized, this model can make concord between theoretical results and data originated from cosmic microwave background and Planck $2013$, $2015$ and $2018$.
We calculate high-precision constraints on Natural Inflation relative to current observational constraints from Planck 2018 + BICEP/Keck(BK15) Polarization + BAO on $r$ and $n_S$, including post-inflationary history of the universe. We find that, for conventional post-inflationary dynamics, Natural Inflation with a cosine potential is disfavored at greater than 95% confidence out by current data. If we assume protracted reheating characterized by $overline{w}>1/3,$ Natural Inflation can be brought into agreement with current observational constraints. However, bringing unmodified Natural Inflation into the 68% confidence region requires values of $T_{mathrm{re}}$ below the scale of electroweak symmetry breaking. The addition of a SHOES prior on the Hubble Constant $H_0$ only worsens the fit.
We study inflation with the Dirac-Born-Infeld (DBI) noncanonical scalar field in both the cold and warm scenarios. We consider the Anti-de Sitter warp factor $f(phi)=f_{0}/phi^{4}$ for the DBI inflation and check viability of the quartic potential $V (phi)=lambdaphi^{4}/4$ in light of the Planck 2015 observational results. In the cold DBI setting, we find that the prediction of this potential in the $r-n_s$ plane is in conflict with Planck 2015 TT,TE,EE+lowP data. This motivates us to focus on the warm DBI inflation with constant sound speed. We conclude that in contrary to the case of cold scenario, the $r-n_s$ result of warm DBI model can be compatible with the 68% CL constraints of Planck 2015 TT,TE,EE+lowP data in the intermediate and high dissipation regimes, whereas it fails to be observationally viable in the weak dissipation regime. Also, the prediction of this model for the running of the scalar spectral index $dn_s/dln k$ is in good agreement with the constraint of Planck 2015 TT,TE,EE+lowP data. Finally, we show that the warm DBI inflation can provide a reasonable solution to the swampland conjecture that challenges the de Sitter limit in the standard inflation.
A novel scalar field free approach to cosmic inflation is presented. The inflationary Universe and the radiation dominated Universe are shown, within the framework of unified brane cosmology, to be two different phases governed by one and the same en ergy density. The phase transition of second order (the Hubble constant exhibits a finite jump) appears naturally and serves as the exit mechanism. No re-heating is needed. The required number of e-folds is achieved without fine tuning.
109 - She-Sheng Xue 2019
Suppose that the early Universe starts with a quantum spacetime originated cosmological $Lambda$-term at the Planck scale $M_{rm pl}$. The cosmological energy density $rho_{_{_Lambda}}$ drives inflation and simultaneously reduces its value to create the matter-energy density $rho_{_{_M}}$ via the continuous pair productions of massive fermions and antifermions. The decreasing $rho_{_{_Lambda}}$ and increasing $rho_{_{_M}}$, in turn, slows down the inflation to its end when the pair production rate $Gamma_M$ is larger than the Hubble rate $H$. The density $rho_{_{_Lambda}}$ and Hubble rate $H$ are uniquely determined by two independent equations from the Einstein equation and energy conservation law, besides the $rho_{_{_M}}$ is determined by pair productions. As a result, inflation naturally appears and theoretical results agree with Planck 2018 observations. Suppose that the reheating efficiently converts $rho_{_{_Lambda}}$ to $rho_{_{_M}}gg rho_{_{_Lambda}}$ accounting for the most relevant Universe mass, and some massive pairs decay to relativistic particles of energy density $rho_{_{_R}}$ starting the hot Big Bang. The back reaction $rho_{_{_M}}leftrightarrow Hleftrightarrow rho_{_{_Lambda}}$ is weak but continues. As a consequence, $rho_{_Lambda}$ closely tracks down $rho_{_R}$ from the reheating end up to the radiation-matter equilibrium, then it varies very slowly, $rho_{_Lambda}propto$ constant, due to the transition from radiation dominant epoch to matter dominant epoch. Therefore the cosmic coincidence problem can be possibly avoided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا