ﻻ يوجد ملخص باللغة العربية
Sentiment analysis is a text mining task that determines the polarity of a given text, i.e., its positiveness or negativeness. Recently, it has received a lot of attention given the interest in opinion mining in micro-blogging platforms. These new forms of textual expressions present new challenges to analyze text given the use of slang, orthographic and grammatical errors, among others. Along with these challenges, a practical sentiment classifier should be able to handle efficiently large workloads. The aim of this research is to identify which text transformations (lemmatization, stemming, entity removal, among others), tokenizers (e.g., words $n$-grams), and tokens weighting schemes impact the most the accuracy of a classifier (Support Vector Machine) trained on two Spanish corpus. The methodology used is to exhaustively analyze all the combinations of the text transformations and their respective parameters to find out which characteristics the best performing classifiers have in common. Furthermore, among the different text transformations studied, we introduce a novel approach based on the combination of word based $n$-grams and character based $q$-grams. The results show that this novel combination of words and characters produces a classifier that outperforms the traditional word based combination by $11.17%$ and $5.62%$ on the INEGI and TASS15 dataset, respectively.
Twitter is a well-known microblogging social site where users express their views and opinions in real-time. As a result, tweets tend to contain valuable information. With the advancements of deep learning in the domain of natural language processing
Background: Social media has the capacity to afford the healthcare industry with valuable feedback from patients who reveal and express their medical decision-making process, as well as self-reported quality of life indicators both during and post tr
Traditional sentiment analysis approaches tackle problems like ternary (3-category) and fine-grained (5-category) classification by learning the tasks separately. We argue that such classification tasks are correlated and we propose a multitask appro
Social media are becoming an increasingly important source of information about the public mood regarding issues such as elections, Brexit, stock market, etc. In this paper we focus on sentiment classification of Twitter data. Construction of sentime
This paper details LTG-Oslo teams participation in the sentiment track of the NEGES 2019 evaluation campaign. We participated in the task with a hierarchical multi-task network, which used shared lower-layers in a deep BiLSTM to predict negation, whi