ترغب بنشر مسار تعليمي؟ اضغط هنا

How to evaluate sentiment classifiers for Twitter time-ordered data?

127   0   0.0 ( 0 )
 نشر من قبل Igor Mozeti\\v{c}
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Social media are becoming an increasingly important source of information about the public mood regarding issues such as elections, Brexit, stock market, etc. In this paper we focus on sentiment classification of Twitter data. Construction of sentiment classifiers is a standard text mining task, but here we address the question of how to properly evaluate them as there is no settled way to do so. Sentiment classes are ordered and unbalanced, and Twitter produces a stream of time-ordered data. The problem we address concerns the procedures used to obtain reliable estimates of performance measures, and whether the temporal ordering of the training and test data matters. We collected a large set of 1.5 million tweets in 13 European languages. We created 138 sentiment models and out-of-sample datasets, which are used as a gold standard for evaluations. The corresponding 138 in-sample datasets are used to empirically compare six different estimation procedures: three variants of cross-validation, and three variants of sequential validation (where test set always follows the training set). We find no significant difference between the best cross-validation and sequential validation. However, we observe that all cross-validation variants tend to overestimate the performance, while the sequential methods tend to underestimate it. Standard cross-validation with random selection of examples is significantly worse than the blocked cross-validation, and should not be used to evaluate classifiers in time-ordered data scenarios.

قيم البحث

اقرأ أيضاً

Diverse word representations have surged in most state-of-the-art natural language processing (NLP) applications. Nevertheless, how to efficiently evaluate such word embeddings in the informal domain such as Twitter or forums, remains an ongoing chal lenge due to the lack of sufficient evaluation dataset. We derived a large list of variant spelling pairs from UrbanDictionary with the automatic approaches of weakly-supervised pattern-based bootstrapping and self-training linear-chain conditional random field (CRF). With these extracted relation pairs we promote the odds of eliding the text normalization procedure of traditional NLP pipelines and directly adopting representations of non-standard words in the informal domain. Our code is available.
This paper describes the participation of the team TwiSE in the SemEval 2016 challenge. Specifically, we participated in Task 4, namely Sentiment Analysis in Twitter for which we implemented sentiment classification systems for subtasks A, B, C and D . Our approach consists of two steps. In the first step, we generate and validate diverse feature sets for twitter sentiment evaluation, inspired by the work of participants of previous editions of such challenges. In the second step, we focus on the optimization of the evaluation measures of the different subtasks. To this end, we examine different learning strategies by validating them on the data provided by the task organisers. For our final submissions we used an ensemble learning approach (stacked generalization) for Subtask A and single linear models for the rest of the subtasks. In the official leaderboard we were ranked 9/35, 8/19, 1/11 and 2/14 for subtasks A, B, C and D respectively.footnote{We make the code available for research purposes at url{https://github.com/balikasg/SemEval2016-Twitter_Sentiment_Evaluation}.}
73 - Hanjie Chen , Yangfeng Ji 2019
Sentiment analysis has been widely used by businesses for social media opinion mining, especially in the financial services industry, where customers feedbacks are critical for companies. Recent progress of neural network models has achieved remarkab le performance on sentiment classification, while the lack of classification interpretation may raise the trustworthy and many other issues in practice. In this work, we study the problem of improving the explainability of existing sentiment classifiers. We propose two data augmentation methods that create additional training examples to help improve model explainability: one method with a predefined sentiment word list as external knowledge and the other with adversarial examples. We test the proposed methods on both CNN and RNN classifiers with three benchmark sentiment datasets. The model explainability is assessed by both human evaluators and a simple automatic evaluation measurement. Experiments show the proposed data augmentation methods significantly improve the explainability of both neural classifiers.
This paper presents a novel approach for multi-lingual sentiment classification in short texts. This is a challenging task as the amount of training data in languages other than English is very limited. Previously proposed multi-lingual approaches ty pically require to establish a correspondence to English for which powerful classifiers are already available. In contrast, our method does not require such supervision. We leverage large amounts of weakly-supervised data in various languages to train a multi-layer convolutional network and demonstrate the importance of using pre-training of such networks. We thoroughly evaluate our approach on various multi-lingual datasets, including the recent SemEval-2016 sentiment prediction benchmark (Task 4), where we achieved state-of-the-art performance. We also compare the performance of our model trained individually for each language to a variant trained for all languages at once. We show that the latter model reaches slightly worse - but still acceptable - performance when compared to the single language model, while benefiting from better generalization properties across languages.
130 - Xinmeng Li , Wansen Wu , Long Qin 2021
Evaluating the quality of a dialogue system is an understudied problem. The recent evolution of evaluation method motivated this survey, in which an explicit and comprehensive analysis of the existing methods is sought. We are first to divide the eva luation methods into three classes, i.e., automatic evaluation, human-involved evaluation and user simulator based evaluation. Then, each class is covered with main features and the related evaluation metrics. The existence of benchmarks, suitable for the evaluation of dialogue techniques are also discussed in detail. Finally, some open issues are pointed out to bring the evaluation method into a new frontier.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا