ترغب بنشر مسار تعليمي؟ اضغط هنا

PRINS: Scalable Model Inference for Component-based System Logs

103   0   0.0 ( 0 )
 نشر من قبل Donghwan Shin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Behavioral software models play a key role in many software engineering tasks; unfortunately, these models either are not available during software development or, if available, quickly become outdated as implementations evolve. Model inference techniques have been proposed as a viable solution to extract finite state models from execution logs. However, existing techniques do not scale well when processing very large logs that can be commonly found in practice. In this paper, we address the scalability problem of inferring the model of a component-based system from large system logs, without requiring any extra information. Our model inference technique, called PRINS, follows a divide and conquer approach. The idea is to first infer a model of each system component from the corresponding logs; then, the individual component models are merged together taking into account the flow of events across components, as reflected in the logs. We evaluated PRINS in terms of scalability and accuracy, using nine datasets composed of logs extracted from publicly available benchmarks and a personal computer running desktop business applications. The results show that PRINS can process large logs much faster than a publicly available and well-known state-of-the-art tool, without significantly compromising the accuracy of inferred models.



قيم البحث

اقرأ أيضاً

Behavioral software models play a key role in many software engineering tasks; unfortunately, these models either are not available during software development or, if available, they quickly become outdated as the implementations evolve. Model infere nce techniques have been proposed as a viable solution to extract finite-state models from execution logs. However, existing techniques do not scale well when processing very large logs, such as system-level logs obtained by combining component-level logs. Furthermore, in the case of component-based systems, existing techniques assume to know the definitions of communication channels between components. However, this information is usually not available in the case of systems integrating 3rd-party components with limited documentation. In this paper, we address the scalability problem of inferring the model of a component-based system from the individual component-level logs, when the only available information about the system are high-level architecture dependencies among components and a (possibly incomplete) list of log message templates denoting communication events between components. Our model inference technique, called SCALER, follows a divide and conquer approach. The idea is to first infer a model of each system component from the corresponding logs; then, the individual component models are merged together taking into account the dependencies among components, as reflected in the logs. We evaluated SCALER in terms of scalability and accuracy, using a dataset of logs from an industrial system; the results show that SCALER can process much larger logs than a state-of-the-art tool, while yielding more accurate models.
148 - Kaibo Cao 2021
As a popular Q&A site for programming, Stack Overflow is a treasure for developers. However, the amount of questions and answers on Stack Overflow make it difficult for developers to efficiently locate the information they are looking for. There are two gaps leading to poor search results: the gap between the users intention and the textual query, and the semantic gap between the query and the post content. Therefore, developers have to constantly reformulate their queries by correcting misspelled words, adding limitations to certain programming languages or platforms, etc. As query reformulation is tedious for developers, especially for novices, we propose an automated software-specific query reformulation approach based on deep learning. With query logs provided by Stack Overflow, we construct a large-scale query reformulation corpus, including the original queries and corresponding reformulated ones. Our approach trains a Transformer model that can automatically generate candidate reformulated queries when given the users original query. The evaluation results show that our approach outperforms five state-of-the-art baselines, and achieves a 5.6% to 33.5% boost in terms of $mathit{ExactMatch}$ and a 4.8% to 14.4% boost in terms of $mathit{GLEU}$.
Misconfigurations have become the dominant causes of software failures in recent years, drawing tremendous attention for their increasing prevalence and severity. Configuration constraints can preemptively avoid misconfiguration by defining the condi tions that configuration options should satisfy. Documentation is the main source of configuration constraints, but it might be incomplete or inconsistent with the source code. In this regard, prior researches have focused on obtaining configuration constraints from software source code through static analysis. However, the difficulty in pointer analysis and context comprehension prevents them from collecting accurate and comprehensive constraints. In this paper, we observed that software logs often contain configuration constraints. We conducted an empirical study and summarized patterns of configuration-related log messages. Guided by the study, we designed and implemented ConfInLog, a static tool to infer configuration constraints from log messages. ConfInLog first selects configuration-related log messages from source code by using the summarized patterns, then infers constraints from log messages based on the summarized natural language patterns. To evaluate the effectiveness of ConfInLog, we applied our tool on seven popular open-source software systems. ConfInLog successfully inferred 22 to 163 constraints, in which 59.5% to 61.6% could not be inferred by the state-of-the-art work. Finally, we submitted 67 documentation patches regarding the constraints inferred by ConfInLog. The constraints in 29 patches have been confirmed by the developers, among which 10 patches have been accepted.
Robotic Process Automation (RPA) is a technology to automate routine work such as copying data across applications or filling in document templates using data from multiple applications. RPA tools allow organizations to automate a wide range of routi nes. However, identifying and scoping routines that can be automated using RPA tools is time consuming. Manual identification of candidate routines via interviews, walk-throughs, or job shadowing allow analysts to identify the most visible routines, but these methods are not suitable when it comes to identifying the long tail of routines in an organization. This article proposes an approach to discover automatable routines from logs of user interactions with IT systems and to synthesize executable specifications for such routines. The approach starts by discovering frequent routines at a control-flow level (candidate routines). It then determines which of these candidate routines are automatable and it synthetizes an executable specification for each such routine. Finally, it identifies semantically equivalent routines so as to produce a set of non-redundant automatable routines. The article reports on an evaluation of the approach using a combination of synthetic and real-life logs. The evaluation results show that the approach can discover automatable routines that are known to be present in a UI log, and that it identifies automatable routines that users recognize as such in real-life logs.
Recently, large-scale transformer-based models have been proven to be effective over a variety of tasks across many domains. Nevertheless, putting them into production is very expensive, requiring comprehensive optimization techniques to reduce infer ence costs. This paper introduces a series of transformer inference optimization techniques that are both in algorithm level and hardware level. These techniques include a pre-padding decoding mechanism that improves token parallelism for text generation, and highly optimized kernels designed for very long input length and large hidden size. On this basis, we propose a transformer inference acceleration library -- Easy and Efficient Transformer (EET), which has a significant performance improvement over existing libraries. Compared to Faster Transformer v4.0s implementation for GPT-2 layer on A100, EET achieves a 1.5-4.5x state-of-art speedup varying with different context lengths. EET is available at https://github.com/NetEase-FuXi/EET. A demo video is available at https://youtu.be/22UPcNGcErg.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا