ﻻ يوجد ملخص باللغة العربية
We present a rigorous photonic mode model to describe the strong coupling between a monolayer of $rm MoSe_2$ and a single gold nanoparticle. The onset of strong coupling is quantified by computing the three-dimensional hybrid quasinormal modes of the combined structure, allowing one to accurately model light-matter interactions without invoking the usual phenomenological theories of strong coupling. We explore the hybrid quasinormal modes as a function of gap size and temperature and find spectral splittings in the range of around 80-110 meV, with no fitting parameters for the material models. We also show how the hybrid modes exhibit Fano-like resonances and quantify the complex poles of the hybrid modes as well as the Purcell factor resonances from embedded dipole emitters. These effects cannot be described with the usual heuristic normal mode theories.
We propose a plasmonic ellipse resonator possessing hybrid modes based on metal-insulator-metal (MIM) waveguide system. Specially, this nanocavity has hybrid characteristic of rectangle and disk resonator, therefore supporting both Fabry-Perot modes
Monolayer transition metal dichalcogenides, coupled to metal plasmonic nanocavities, have recently emerged as new platforms for strong light-matter interactions. These systems are expected to have nonlinear optical properties that will enable them to
We derive a general theory of linear coupling and Kerr nonlinear coupling between modes of dielectric optical resonators from first principles. The treatment is not specific to a particular geometry or choice of mode basis, and can therefore be used
We report on the nonlinear coupling between the mechanical modes of a nanotube resonator. The coupling is revealed in a pump-probe experiment where a mode driven by a pump force is shown to modify the motion of a second mode measured with a probe for
Optomechanical cavities have proven to be an exceptional tool to explore fundamental and technological aspects of the interaction between mechanical and optical waves. Such interactions strongly benefit from cavities with large optomechanical couplin