ترغب بنشر مسار تعليمي؟ اضغط هنا

SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization

86   0   0.0 ( 0 )
 نشر من قبل Yixin Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present a conceptually simple while empirically powerful framework for abstractive summarization, SimCLS, which can bridge the gap between the learning objective and evaluation metrics resulting from the currently dominated sequence-to-sequence learning framework by formulating text generation as a reference-free evaluation problem (i.e., quality estimation) assisted by contrastive learning. Experimental results show that, with minor modification over existing top-scoring systems, SimCLS can improve the performance of existing top-performing models by a large margin. Particularly, 2.51 absolute improvement against BART and 2.50 over PEGASUS w.r.t ROUGE-1 on the CNN/DailyMail dataset, driving the state-of-the-art performance to a new level. We have open-sourced our codes and results: https://github.com/yixinL7/SimCLS. Results of our proposed models have been deployed into ExplainaBoard platform, which allows researchers to understand our systems in a more fine-grained way.

قيم البحث

اقرأ أيضاً

Unlike well-structured text, such as news reports and encyclopedia articles, dialogue content often comes from two or more interlocutors, exchanging information with each other. In such a scenario, the topic of a conversation can vary upon progressio n and the key information for a certain topic is often scattered across multiple utterances of different speakers, which poses challenges to abstractly summarize dialogues. To capture the various topic information of a conversation and outline salient facts for the captured topics, this work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives, which are expected to implicitly model the topic change and handle information scattering challenges for the dialogue summarization task. The proposed contrastive objectives are framed as auxiliary tasks for the primary dialogue summarization task, united via an alternative parameter updating strategy. Extensive experiments on benchmark datasets demonstrate that the proposed simple method significantly outperforms strong baselines and achieves new state-of-the-art performance. The code and trained models are publicly available via href{https://github.com/Junpliu/ConDigSum}{https://github.com/Junpliu/ConDigSum}.
In this paper, we present a denoising sequence-to-sequence (seq2seq) autoencoder via contrastive learning for abstractive text summarization. Our model adopts a standard Transformer-based architecture with a multi-layer bi-directional encoder and an auto-regressive decoder. To enhance its denoising ability, we incorporate self-supervised contrastive learning along with various sentence-level document augmentation. These two components, seq2seq autoencoder and contrastive learning, are jointly trained through fine-tuning, which improves the performance of text summarization with regard to ROUGE scores and human evaluation. We conduct experiments on two datasets and demonstrate that our model outperforms many existing benchmarks and even achieves comparable performance to the state-of-the-art abstractive systems trained with more complex architecture and extensive computation resources.
Existing summarization systems mostly generate summaries purely relying on the content of the source document. However, even for humans, we usually need some references or exemplars to help us fully understand the source document and write summaries in a particular format. But how to find the high-quality exemplars and incorporate them into summarization systems is still challenging and worth exploring. In this paper, we propose RetrievalSum, a novel retrieval enhanced abstractive summarization framework consisting of a dense Retriever and a Summarizer. At first, several closely related exemplars are retrieved as supplementary input to help the generation model understand the text more comprehensively. Furthermore, retrieved exemplars can also play a role in guiding the model to capture the writing style of a specific corpus. We validate our method on a wide range of summarization datasets across multiple domains and two backbone models: BERT and BART. Results show that our framework obtains significant improvement by 1.38~4.66 in ROUGE-1 score when compared with the powerful pre-trained models, and achieve new state-of-the-art on BillSum. Human evaluation demonstrates that our retrieval enhanced model can better capture the domain-specific writing style.
Pre-trained language models have recently advanced abstractive summarization. These models are further fine-tuned on human-written references before summary generation in test time. In this work, we propose the first application of transductive learn ing to summarization. In this paradigm, a model can learn from the test sets input before inference. To perform transduction, we propose to utilize input document summarizing sentences to construct references for learning in test time. These sentences are often compressed and fused to form abstractive summaries and provide omitted details and additional context to the reader. We show that our approach yields state-of-the-art results on CNN/DM and NYT datasets. For instance, we achieve over 1 ROUGE-L point improvement on CNN/DM. Further, we show the benefits of transduction from older to more recent news. Finally, through human and automatic evaluation, we show that our summaries become more abstractive and coherent.
224 - Esin Durmus , He He , Mona Diab 2020
Neural abstractive summarization models are prone to generate content inconsistent with the source document, i.e. unfaithful. Existing automatic metrics do not capture such mistakes effectively. We tackle the problem of evaluating faithfulness of a g enerated summary given its source document. We first collected human annotations of faithfulness for outputs from numerous models on two datasets. We find that current models exhibit a trade-off between abstractiveness and faithfulness: outputs with less word overlap with the source document are more likely to be unfaithful. Next, we propose an automatic question answering (QA) based metric for faithfulness, FEQA, which leverages recent advances in reading comprehension. Given question-answer pairs generated from the summary, a QA model extracts answers from the document; non-matched answers indicate unfaithful information in the summary. Among metrics based on word overlap, embedding similarity, and learned language understanding models, our QA-based metric has significantly higher correlation with human faithfulness scores, especially on highly abstractive summaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا