ﻻ يوجد ملخص باللغة العربية
The production of $^{3}$H, $^{7}$Be, and $^{22}$Na by interactions of cosmic-ray particles with silicon can produce radioactive backgrounds in detectors used to search for rare events. Through controlled irradiation of silicon CCDs and wafers with a neutron beam that mimics the cosmic-ray neutron spectrum, followed by direct counting, we determined that the production rate from cosmic-ray neutrons at sea level is ($112 pm 24$) atoms/(kg day) for $^{3}$H, ($8.1 pm 1.9 $) atoms/(kg day) for $^{7}$Be, and ($43.0 pm 7.1 $) atoms/(kg day) for $^{22}$Na. Complementing these results with the current best estimates of activation cross sections for cosmic-ray particles other than neutrons, we obtain a total sea-level cosmic-ray production rate of ($124 pm 24$) atoms/(kg day) for $^{3}$H, ($9.4 pm 2.0 $) atoms/(kg day) for $^{7}$Be, and ($49.6 pm 7.3 $) atoms/(kg day) for $^{22}$Na. These measurements will help constrain background estimates and determine the maximum time that silicon-based detectors can remain unshielded during detector fabrication before cosmogenic backgrounds impact the sensitivity of next-generation rare-event searches.
A study on cosmogenic activation in germanium was carried out to evaluate the cosmogenic background level of natural and $^{70}$Ge depleted germanium detectors. The production rates of long-lived radionuclides were calculated with Geant4 and CRY. Res
The rare event search experiments using germanium detectors are performed in the underground laboratories to prevent cosmic rays. However, the cosmogenic activation of the cupreous detector components on the ground will generate long half-life radioi
The direct detection of dark matter particles requires ultra-low background conditions at energies below a few tens of keV. Radioactive isotopes are produced via cosmogenic activation in detectors and other materials and those isotopes constitute a b
This paper describes a novel directional neutron detector prototype. The low pressure time projection chamber uses a mix of helium and CF4 gases. The detector reconstructs the energy and angular distribution of fast neutron recoils. This paper report
We present a measurement of the cosmogenic activation in the germanium cryogenic detectors of the EDELWEISS III direct dark matter search experiment. The decay rates measured in detectors with different exposures to cosmic rays above ground are conve