ترغب بنشر مسار تعليمي؟ اضغط هنا

LLC: Accurate, Multi-purpose Learnt Low-dimensional Binary Codes

54   0   0.0 ( 0 )
 نشر من قبل Aditya Kusupati
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning binary representations of instances and classes is a classical problem with several high potential applications. In modern settings, the compression of high-dimensional neural representations to low-dimensional binary codes is a challenging task and often require large bit-codes to be accurate. In this work, we propose a novel method for Learning Low-dimensional binary Codes (LLC) for instances as well as classes. Our method does not require any side-information, like annotated attributes or label meta-data, and learns extremely low-dimensional binary codes (~20 bits for ImageNet-1K). The learnt codes are super-efficient while still ensuring nearly optimal classification accuracy for ResNet50 on ImageNet-1K. We demonstrate that the learnt codes capture intrinsically important features in the data, by discovering an intuitive taxonomy over classes. We further quantitatively measure the quality of our codes by applying it to the efficient image retrieval as well as out-of-distribution (OOD) detection problems. For ImageNet-100 retrieval problem, our learnt binary codes outperform 16 bit HashNet using only 10 bits and also are as accurate as 10 dimensional real representations. Finally, our learnt binary codes can perform OOD detection, out-of-the-box, as accurately as a baseline that needs ~3000 samples to tune its threshold, while we require none. Code and pre-trained models are available at https://github.com/RAIVNLab/LLC.



قيم البحث

اقرأ أيضاً

Recently, Frankle & Carbin (2019) demonstrated that randomly-initialized dense networks contain subnetworks that once found can be trained to reach test accuracy comparable to the trained dense network. However, finding these high performing trainabl e subnetworks is expensive, requiring iterative process of training and pruning weights. In this paper, we propose (and prove) a stronger Multi-Prize Lottery Ticket Hypothesis: A sufficiently over-parameterized neural network with random weights contains several subnetworks (winning tickets) that (a) have comparable accuracy to a dense target network with learned weights (prize 1), (b) do not require any further training to achieve prize 1 (prize 2), and (c) is robust to extreme forms of quantization (i.e., binary weights and/or activation) (prize 3). This provides a new paradigm for learning compact yet highly accurate binary neural networks simply by pruning and quantizing randomly weighted full precision neural networks. We also propose an algorithm for finding multi-prize tickets (MPTs) and test it by performing a series of experiments on CIFAR-10 and ImageNet datasets. Empirical results indicate that as models grow deeper and wider, multi-prize tickets start to reach similar (and sometimes even higher) test accuracy compared to their significantly larger and full-precision counterparts that have been weight-trained. Without ever updating the weight values, our MPTs-1/32 not only set new binary weight network state-of-the-art (SOTA) Top-1 accuracy -- 94.8% on CIFAR-10 and 74.03% on ImageNet -- but also outperform their full-precision counterparts by 1.78% and 0.76%, respectively. Further, our MPT-1/1 achieves SOTA Top-1 accuracy (91.9%) for binary neural networks on CIFAR-10. Code and pre-trained models are available at: https://github.com/chrundle/biprop.
323 - Yao Shu , Wei Wang , Shaofeng Cai 2019
Neural architecture search (NAS) searches architectures automatically for given tasks, e.g., image classification and language modeling. Improving the search efficiency and effectiveness have attracted increasing attention in recent years. However, f ew efforts have been devoted to understanding the generated architectures. In this paper, we first reveal that existing NAS algorithms (e.g., DARTS, ENAS) tend to favor architectures with wide and shallow cell structures. These favorable architectures consistently achieve fast convergence and are consequently selected by NAS algorithms. Our empirical and theoretical study further confirms that their fast convergence derives from their smooth loss landscape and accurate gradient information. Nonetheless, these architectures may not necessarily lead to better generalization performance compared with other candidate architectures in the same search space, and therefore further improvement is possible by revising existing NAS algorithms.
We study a multi-agent stochastic linear bandit with side information, parameterized by an unknown vector $theta^* in mathbb{R}^d$. The side information consists of a finite collection of low-dimensional subspaces, one of which contains $theta^*$. In our setting, agents can collaborate to reduce regret by sending recommendations across a communication graph connecting them. We present a novel decentralized algorithm, where agents communicate subspace indices with each other and each agent plays a projected variant of LinUCB on the corresponding (low-dimensional) subspace. By distributing the search for the optimal subspace across users and learning of the unknown vector by each agent in the corresponding low-dimensional subspace, we show that the per-agent finite-time regret is much smaller than the case when agents do not communicate. We finally complement these results through simulations.
In recent years, we have witnessed a surge of interest in multi-view representation learning, which is concerned with the problem of learning representations of multi-view data. When facing multiple views that are highly related but sightly different from each other, most of existing multi-view methods might fail to fully integrate multi-view information. Besides, correlations between features from multiple views always vary seriously, which makes multi-view representation challenging. Therefore, how to learn appropriate embedding from multi-view information is still an open problem but challenging. To handle this issue, this paper proposes a novel multi-view learning method, named Multi-view Low-rank Preserving Embedding (MvLPE). It integrates different views into one centroid view by minimizing the disagreement term, based on distance or similarity matrix among instances, between the centroid view and each view meanwhile maintaining low-rank reconstruction relations among samples for each view, which could make more full use of compatible and complementary information from multi-view features. Unlike existing methods with additive parameters, the proposed method could automatically allocate a suitable weight for each view in multi-view information fusion. However, MvLPE couldnt be directly solved, which makes the proposed MvLPE difficult to obtain an analytic solution. To this end, we approximate this solution based on stationary hypothesis and normalization post-processing to efficiently obtain the optimal solution. Furthermore, an iterative alternating strategy is provided to solve this multi-view representation problem. The experiments on six benchmark datasets demonstrate that the proposed method outperforms its counterparts while achieving very competitive performance.
This paper addresses the problem of Approximate Nearest Neighbor (ANN) search in pattern recognition where feature vectors in a database are encoded as compact codes in order to speed-up the similarity search in large-scale databases. Considering the ANN problem from an information-theoretic perspective, we interpret it as an encoding, which maps the original feature vectors to a less entropic sparse representation while requiring them to be as informative as possible. We then define the coding gain for ANN search using information-theoretic measures. We next show that the classical approach to this problem, which consists of binarization of the projected vectors is sub-optimal. Instead, a properly designed ternary encoding achieves higher coding gains and lower complexity.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا