ترغب بنشر مسار تعليمي؟ اضغط هنا

A General View on Double Limits in Differential Equations

207   0   0.0 ( 0 )
 نشر من قبل Christian Kuehn
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we review several results from singularly perturbed differential equations with multiple small parameters. In addition, we develop a general conceptual framework to compare and contrast the different results by proposing a three-step process. First, one specifies the setting and restrictions of the differential equation problem to be studied and identifies the relevant small parameters. Second, one defines a notion of equivalence via a property/observable for partitioning the parameter space into suitable regions near the singular limit. Third, one studies the possible asymptotic singular limit problems as well as perturbation results to complete the diagrammatic subdivision process. We illustrate this approach for two simple problems from algebra and analysis. Then we proceed to the review of several modern double-limit problems including multiple time scales, stochastic dynamics, spatial patterns, and network coupling. For each example, we illustrate the previously mentioned three-step process and show that already double-limit parametric diagrams provide an excellent unifying theme. After this review, we compare and contrast the common features among the different examples. We conclude with a brief outlook, how our methodology can help to systematize the field better, and how it can be transferred to a wide variety of other classes of differential equations.

قيم البحث

اقرأ أيضاً

65 - Qi Feng , Wuchen Li 2021
We study convergence behaviors of degenerate and non-reversible stochastic differential equations. Our method follows a Lyapunov method in probability density space, in which the Lyapunov functional is chosen as a weighted relative Fisher information functional. We construct a weighted Fisher information induced Gamma calculus method with a structure condition. Under this condition, an explicit algebraic tensor is derived to guarantee the convergence rate for the probability density function converging to its invariant distribution. We provide an analytical example for underdamped Langevin dynamics with variable diffusion coefficients.
This paper introduces the study of occurrence of symmetries in binary differential equations (BDEs). These are implicit differential equations given by the zeros of a quadratic 1-form, $a(x,y)dy^2 + b(x,y)dxdy + c(x,y)dx^2 = 0,$ for $a, b, c$ smooth real functions defined on an open set of $mathbb{R}^2$. Generically, solutions of a BDE are given as leaves of a pair of foliations, and the appropriate way to define the action of a symmetry must depend not only whether it preserves or inverts the plane orientation, but also whether it preserves or interchanges the foliations. The first main result reveals this dependence, which is given algebraically by a formula relating three group homomorphisms defined on the symmetry group of the BDE. The second main result adapts algebraic methods from invariant theory for representations of compact Lie groups on the space of quadratic forms on $mathbb{R}^n$, $n geq 2$. With that we obtain an algorithm to compute general expressions of quadratic forms. Now, symmetric quadratic 1-forms are in one-to-one corrspondence with equivariant quadratic forms on the plane, so these are treated here as a particular case. We then apply the result to obtain the general forms of equivariant quadratic 1-forms under each compact subgroup of the orthogonal group $mathbf{O}(2)$.
By applying a singular perturbation approach, canard limit cycles exhibited by a general family of singularly perturbed planar piecewise linear (PWL) differential systems are analyzed. The performed study involves both hyperbolic and non-hyperbolic c anard limit cycles appearing after both a supercritical and a subcritical Hopf bifurcation. The obtained results are completely comparable with those obtained for smooth vector fields. In some sense, the manuscript can be understood as an extension towards the PWL framework of the results obtained for smooth systems by Krupa and Szmolyan [18]. In addition, some novel slow-fast behaviors are obtained. In particular, in the supercritical case, and under suitable conditions, it is proved that the limit cycles are organized along a curve exhibiting two folds. Each of these folds corresponds to a saddle-node bifurcation of canard limit cycles, one involving headless canard cycles, whereas the other involving canard cycles with head. This configuration allows the coexistence of three canard limit cycles.
152 - Lucio Galeati 2020
Nonlinear Young integrals have been first introduced in [Catellier,Gubinelli, SPA 2016] and provide a natural generalisation of classical Young ones, but also a versatile tool in the pathwise study of regularisation by noise phenomena. We present her e a self-contained account of the theory, focusing on wellposedness results for abstract nonlinear Young differential equations, together with some new extensions; convergence of numerical schemes and nonlinear Young PDEs are also treated. Most results are presented for general (possibly infinite dimensional) Banach spaces and without using compactness assumptions, unless explicitly stated.
Our aim in this paper is to establish stable manifolds near hyperbolic equilibria of fractional differential equations in arbitrary finite dimensional spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا