ترغب بنشر مسار تعليمي؟ اضغط هنا

Hypoelliptic entropy dissipation for stochastic differential equations

66   0   0.0 ( 0 )
 نشر من قبل Qi Feng
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study convergence behaviors of degenerate and non-reversible stochastic differential equations. Our method follows a Lyapunov method in probability density space, in which the Lyapunov functional is chosen as a weighted relative Fisher information functional. We construct a weighted Fisher information induced Gamma calculus method with a structure condition. Under this condition, an explicit algebraic tensor is derived to guarantee the convergence rate for the probability density function converging to its invariant distribution. We provide an analytical example for underdamped Langevin dynamics with variable diffusion coefficients.



قيم البحث

اقرأ أيضاً

We deal with the problem of parameter estimation in stochastic differential equations (SDEs) in a partially observed framework. We aim to design a method working for both elliptic and hypoelliptic SDEs, the latters being characterized by degenerate d iffusion coefficients. This feature often causes the failure of contrast estimators based on Euler Maruyama discretization scheme and dramatically impairs classic stochastic filtering methods used to reconstruct the unobserved states. All of theses issues make the estimation problem in hypoelliptic SDEs difficult to solve. To overcome this, we construct a well-defined cost function no matter the elliptic nature of the SDEs. We also bypass the filtering step by considering a control theory perspective. The unobserved states are estimated by solving deterministic optimal control problems using numerical methods which do not need strong assumptions on the diffusion coefficient conditioning. Numerical simulations made on different partially observed hypoelliptic SDEs reveal our method produces accurate estimate while dramatically reducing the computational price comparing to other methods.
We develop and analyze a method, density tracking by quadrature (DTQ), to compute the probability density function of the solution of a stochastic differential equation. The derivation of the method begins with the discretization in time of the stoch astic differential equation, resulting in a discrete-time Markov chain with continuous state space. At each time step, DTQ applies quadrature to solve the Chapman-Kolmogorov equation for this Markov chain. In this paper, we focus on a particular case of the DTQ method that arises from applying the Euler-Maruyama method in time and the trapezoidal quadrature rule in space. Our main result establishes that the density computed by DTQ converges in $L^1$ to both the exact density of the Markov chain (with exponential convergence rate), and to the exact density of the stochastic differential equation (with first-order convergence rate). We establish a Chernoff bound that implies convergence of a domain-truncated version of DTQ. We carry out numerical tests to show that the empirical performance of DTQ matches theoretical results, and also to demonstrate that DTQ can compute densities several times faster than a Fokker-Planck solver, for the same level of error.
426 - Miaomiao Fu , Zhenxin Liu 2010
The concept of square-mean almost automorphy for stochastic processes is introduced. The existence and uniqueness of square-mean almost automorphic solutions to some linear and non-linear stochastic differential equations are established provided the coefficients satisfy some conditions. The asymptotic stability of the unique square-mean almost automorphic solution in square-mean sense is discussed.
133 - Xin Liu , Zhenxin Liu 2020
In this paper, we use a unified framework to study Poisson stable (including stationary, periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent, almost recurrent in the sense of Bebutov, Levitan almost periodic, pseudo-peri odic, pseudo-recurrent and Poisson stable) solutions for semilinear stochastic differential equations driven by infinite dimensional Levy noise with large jumps. Under suitable conditions on drift, diffusion and jump coefficients, we prove that there exist solutions which inherit the Poisson stability of coefficients. Further we show that these solutions are globally asymptotically stable in square-mean sense. Finally, we illustrate our theoretical results by several examples.
160 - David Cheban , Zhenxin Liu 2020
In contrast to existing works on stochastic averaging on finite intervals, we establish an averaging principle on the whole real axis, i.e. the so-called second Bogolyubov theorem, for semilinear stochastic ordinary differential equations in Hilbert space with Poisson stable (in particular, periodic, quasi-periodic, almost periodic, almost automorphic etc) coefficients. Under some appropriate conditions we prove that there exists a unique recurrent solution to the original equation, which possesses the same recurrence property as the coefficients, in a small neighborhood of the stationary solution to the averaged equation, and this recurrent solution converges to the stationary solution of averaged equation uniformly on the whole real axis when the time scale approaches zero.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا