ﻻ يوجد ملخص باللغة العربية
Many task-oriented dialogue systems use deep reinforcement learning (DRL) to learn policies that respond to the user appropriately and complete the tasks successfully. Training DRL agents with diverse dialogue trajectories prepare them well for rare user requests and unseen situations. One effective diversification method is to let the agent interact with a diverse set of learned user models. However, trajectories created by these artificial user models may contain generation errors, which can quickly propagate into the agents policy. It is thus important to control the quality of the diversification and resist the noise. In this paper, we propose a novel dialogue diversification method for task-oriented dialogue systems trained in simulators. Our method, Intermittent Short Extension Ensemble (I-SEE), constrains the intensity to interact with an ensemble of diverse user models and effectively controls the quality of the diversification. Evaluations on the Multiwoz dataset show that I-SEE successfully boosts the performance of several state-of-the-art DRL dialogue agents.
Dialogue management (DM) decides the next action of a dialogue system according to the current dialogue state, and thus plays a central role in task-oriented dialogue systems. Since dialogue management requires to have access to not only local uttera
Scarcity of training data for task-oriented dialogue systems is a well known problem that is usually tackled with costly and time-consuming manual data annotation. An alternative solution is to rely on automatic text generation which, although less a
Continual learning in task-oriented dialogue systems can allow us to add new domains and functionalities through time without incurring the high cost of a whole system retraining. In this paper, we propose a continual learning benchmark for task-orie
In this paper, we propose Minimalist Transfer Learning (MinTL) to simplify the system design process of task-oriented dialogue systems and alleviate the over-dependency on annotated data. MinTL is a simple yet effective transfer learning framework, w
Over-dependence on domain ontology and lack of knowledge sharing across domains are two practical and yet less studied problems of dialogue state tracking. Existing approaches generally fall short in tracking unknown slot values during inference and