ترغب بنشر مسار تعليمي؟ اضغط هنا

The gravitational field of a star in quadratic gravity

32   0   0.0 ( 0 )
 نشر من قبل Samuele Marco Silveravalle
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The characterization of the gravitational field of isolated objects is still an open question in quadratic theories of gravity. We study static equilibrium solutions for a self-gravitating fluid in extensions of General Relativity including terms quadratic in the Weyl tensor $C_{mu urhosigma}$ and in the Ricci scalar $R$, as suggested by one-loop corrections to classical gravity. By the means of a shooting method procedure we link the total gravitational mass and the strength of the Yukawa corrections associated with the quadratic terms with the fluid properties at the center. It is shown that the inclusion of the $C_{mu urhosigma}C^{mu urhosigma}$ coupling in the lagrangian has a much stronger impact than the $R^2$ correction in the determination of the radius and of the maximum mass of a compact object. We also suggest that the ambiguity in the definition of mass in quadratic gravity theories can conveniently be exploited to detect deviations from standard General Relativity.



قيم البحث

اقرأ أيضاً

The direct detection of gravitational waves now provides a new channel of testing gravity theories. Despite that the parametrized post-Einsteinian framework is a powerful tool to quantitatively investigate effects of modification of gravity theory, t he gravitational waveform in this framework is still extendable. One of such extensions is to take into account the gradual activation of dipole radiation due to massive fields, which are still only very weakly constrained if their mass $m$ is greater than $10^{-16}$ eV from pulsar observations. Ground-based gravitational-wave detectors, LIGO, Virgo, and KAGRA, are sensitive to this activation in the mass range, $10^{-14}$ eV $lesssim m lesssim 10^{-13}$ eV. Hence, we discuss a dedicated test for dipole radiation due to a massive field using the LIGO-Virgo collaborations open data. In addition, assuming Einstein-dilaton-Gauss-Bonnet (EdGB) type coupling, we combine the results of the analysis of the binary black hole events to obtain the 90% confidence level constraints on the coupling parameter $alpha_{rm EdGB}$ as $sqrt{alpha_{rm EdGB}} lesssim 2.47$ km for any mass less than $6 times 10^{-14}$ eV for the first time, including $sqrt{alpha_{rm EdGB}} lesssim 1.85$ km in the massless limit.
We compute the modified friction coefficient controlling the propagation of tensor metric perturbations in the context of a generalized cosmological scenario based on a theory of gravity with quadratic curvature corrections. In such a context we disc uss the differences between gravitational and electromagnetic luminosity distance, as well as the differences with the standard results based on the Einstein equations. We present numerical estimates of the modified luminosity distance on the cosmic redshift scale typical of Supernovae and standard sirens.
We deal with quadratic metric-affine gravity (QMAG), which is an alternative theory of gravity and present a new explicit representation of the field equations of this theory. In our previous work we found new explicit vacuum solutions of QMAG, namel y generalised pp-waves of parallel Ricci curvature with purely tensor torsion. Here we do not make any assumptions on the properties of torsion and write down our field equations accordingly. We present a review of research done thus far by several authors in finding new solutions of QMAG and different approaches in generalising pp-waves. We present two conjectures on the new types of solutions of QMAG which the ansatz presented in this paper will hopefully enable us to prove.
In this paper we analyze the gravitational field of a global monopole in the context of $f(R)$ gravity. More precisely, we show that the field equations obtained are expressed in terms of $F(R)=frac{df(R)}{dR}$. Since we are dealing with a sphericall y symmetric system, we assume that $F(R)$ is a function of the radial coordinate only. Moreover, adopting the weak field approximation, we can provide all components of the metric tensor. A comparison with the corresponding results obtained in General Relativity and in the Brans-Dicke theory is also made.
119 - Soumya Chakrabarti 2017
We study the evolution of a self interacting scalar field in Einstein-Gauss-Bonnet theory in four dimension where the scalar field couples non minimally with the Gauss-Bonnet term. Considering a polynomial coupling of the scalar field with the Gauss- Bonnet term, a self-interaction potential and an additional perfect fluid distribution alongwith the scalar field, we investigate different possibilities regarding the outcome of the collapsing scalar field. The strength of the coupling and choice of the self-interaction potential serves as the pivotal initial conditions of the models presented. The high degree of non-linearity in the equation system is taken care off by using a method of invertibe point transformation of anharmonic oscillator equation, which has proven itself very useful in recent past while investigating dynamics of minimally coupled scalar fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا