ﻻ يوجد ملخص باللغة العربية
Black-box optimization (BBO) has a broad range of applications, including automatic machine learning, engineering, physics, and experimental design. However, it remains a challenge for users to apply BBO methods to their problems at hand with existing software packages, in terms of applicability, performance, and efficiency. In this paper, we build OpenBox, an open-source and general-purpose BBO service with improved usability. The modular design behind OpenBox also facilitates flexible abstraction and optimization of basic BBO components that are common in other existing systems. OpenBox is distributed, fault-tolerant, and scalable. To improve efficiency, OpenBox further utilizes algorithm agnostic parallelization and transfer learning. Our experimental results demonstrate the effectiveness and efficiency of OpenBox compared to existing systems.
Deep neural networks are vulnerable to adversarial examples, even in the black-box setting, where the attacker is restricted solely to query access. Existing black-box approaches to generating adversarial examples typically require a significant numb
This paper investigates the control of an ML component within the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) devoted to black-box optimization. The known CMA-ES weakness is its sample complexity, the number of evaluations of the objecti
Autonomous and semi-autonomous systems for safety-critical applications require rigorous testing before deployment. Due to the complexity of these systems, formal verification may be impossible and real-world testing may be dangerous during developme
We derive an optimal policy for adaptively restarting a randomized algorithm, based on observed features of the run-so-far, so as to minimize the expected time required for the algorithm to successfully terminate. Given a suitable Bayesian prior, thi
In this work, we investigate black-box optimization from the perspective of frequentist kernel methods. We propose a novel batch optimization algorithm, which jointly maximizes the acquisition function and select points from a whole batch in a holist